Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1.
Z [1233d-2] Mệnh đề
Z nào sau đâyZsai?
[ f (x) + g(x)]dx =
A.
Z
B.
[ f (x) − g(x)]dx =
f (x)dx +
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.
Câu 2. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vô số.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 3. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = .
D. lim un = 1.
2
Câu 4. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≤ .
D. m ≥ .
4
4
4
4
Câu 5.
các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
√ [4-1246d] Trong tất cả √
A. 3.
B. 5.
C. 1.
D. 2.
Câu 6. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
C. 8.
D. 20.
x+2
đồng biến trên khoảng
Câu 7. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. 1.
D. Vô số.
Câu 8. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm
3
dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6 giây
2
cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 387 m.
C. 27 m.
D. 25 m.
Câu 9. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
Câu 10. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
là
√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD
√
3
a 3
a
a 3
A.
.
B.
.
C.
.
D. a3 .
3
3
9
√
√
2
−
1
−
3i lần lượt √l
Câu 11. Phần thực và √
phần ảo của số phức
z
=
√
√
A. Phần thực là 1√− 2, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Trang 1/4 Mã đề 1
Câu 12. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
B. 5.
A. .
C. 5.
5
√
D. 25.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
2a
a
A. .
B.
.
C.
.
D. .
3
3
3
4
Câu 13. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 14. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 1.
D. 2.
Câu 15. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.
D. 6.
C. 10.
Câu 16. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.
B. 2e.
Câu 17. Gọi F(x) là một nguyên hàm của hàm y =
A.
1
.
9
B.
1
.
3
C. 3.
D.
2
.
e
ln x p 2
1
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
C. .
D. .
9
3
Câu 18. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
tan x + m
Câu 19. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
Câu 20. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.
7n − 2n + 1
3n3 + 2n2 + 1
B. 1.
2
Câu 21. Tính lim
2
A. - .
3
C. 8.
D. 6.
7
.
3
D. 0.
3
C.
Câu 22. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
c a2 + b2
b a2 + c2
a b2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 20a3 .
B. 40a3 .
C.
.
D. 10a3 .
3
Câu 24. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
D. {5; 3}.
Trang 2/4 Mã đề 1
Câu 25. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
C. 2; .
D. [3; 4).
A. (1; 2).
B.
2
2
Câu 26. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; +∞).
C. (−∞; 2).
√
ab.
D. (0; 2).
Câu 27. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2.
C. P = 2i.
D. P =
.
2
2
Câu 28. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Trục ảo.
C. Đường phân giác góc phần tư thứ nhất.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 29.√Biểu thức nào sau đây √
khơng có nghĩa
−3
0
A. (− 2) .
B.
−1.
C. (−1)−1 .
D. 0−1 .
Câu 30. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1202 m.
C. 2400 m.
D. 1134 m.
√3
Câu 31. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
C. 3.
D. .
A. −3.
B. − .
3
3
Câu 32. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.
Câu 33. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. log2 13.
D. 13.
2n + 1
Câu 34. Tính giới hạn lim
3n + 2
2
B. 0.
A. .
3
C.
1
.
2
D.
3
.
2
Câu 35. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 36. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
cos n + sin n
Câu 37. Tính lim
n2 + 1
A. −∞.
B. 0.
√
1
3|x−2|
= m − 2 có nghiệm
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
C. +∞.
D. 1.
2
Câu 38. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. −7.
D. 7.
Trang 3/4 Mã đề 1
Câu 39. Tính lim
2n2 − 1
3n6 + n4
A. 2.
Câu 40. Tính lim
x→+∞
A. −3.
x−2
x+3
2
.
3
B. 1.
C. 0.
D.
2
B. − .
3
C. 2.
D. 1.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
3.
C
D
5.
B
D
12.
14.
B
16.
18.
4.
C
8.
C
11.
C
13.
C
15. A
17.
C
C
D
19.
B
20.
D
22.
C
6. A
7. A
10.
2.
21. A
23. A
C
24. A
25.
B
26. A
27.
B
28.
29.
D
30. A
31.
D
32. A
33.
C
34. A
35.
C
36. A
37.
38.
40.
D
B
39.
D
1
B
C