Tải bản đầy đủ (.pdf) (4 trang)

Đề ôn thi thpt toán (171)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (106.83 KB, 4 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 32.

D. S = 135.

Câu 2. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C√0 D) bằng



2a 3
a 3
a 3


.
B.
.
C. a 3.
.
A.
D.
2
2
3
Câu 3. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B. −2.
C. −7.
D.
.
27
Câu 4. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 5. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 6. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1

1
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
A. log2 a =
loga 2
log2 a
Câu 7. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 2e.
e
Z 2
ln(x + 1)
Câu 8. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 3.
C. 0.
Câu 9. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. 10.


D. 3.

D. 1.
D. 20.

Câu 10. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4 − 2e
4e + 2
Câu 11. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Khơng có.
C. Có vơ số.
D. Có một.
0


Câu 12. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.

C. 3.

D. 4.

[ = 60◦ , S O
Câu 13. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng


2a 57
a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
19
19
17
Câu 14. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng

A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
Trang 1/4 Mã đề 1


x2 − 5x + 6
x→2
x−2
A. −1.
B. 1.
x+1
bằng
Câu 16. Tính lim
x→−∞ 6x − 2
1
A. .
B. 1.
6
Câu 15. Tính giới hạn lim

C. 0.

C.

D. 5.

1
.

2

D.

Câu 17. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln x.

B. y0 = 2 x . ln 2.

C. y0 =

1
.
ln 2

1
.
3

D. y0 =

1
2 x . ln

x

.

Câu 18. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau

(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (I) và (II).

C. (II) và (III).

B. 2 < m ≤ 3.

1

= m − 2 có nghiệm
3|x−2|
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.

Câu 19. [12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.

D. Cả ba mệnh đề.

Câu 20. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 6).


Câu 21. Thể tích của khối lập phương
√ có cạnh bằng a 2
3


2a 2
B.
.
C. V = 2a3 .
D. 2a3 2.
A. V = a3 2.
3
Câu 22. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.
C. 5.
!2x−1
!2−x
3
3
Câu 23. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (+∞; −∞).
C. (−∞; 1].


D. 4.

D. [1; +∞).

Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
a3 3
2a3 3
3
A.
.
B.
.
C. a 3.
D.
.
3
6
3
Câu 25. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

2a3 6
a3 3

a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
2
4
12
Câu 26. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. a 2.
C.
.
D. 2a 2.
4

2
Trang 2/4 Mã đề 1


 π
Câu 27. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
1 π
C.
D. e 3 .
A. 1.
B.
e .
e .
2
2
2
2
Câu 28. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
d = 60◦ . Đường chéo
Câu 29. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB

0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
3
.
B.
.
C. a 6.
D.
.
A.
3
3
3
Câu 30. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .

!
3n + 2
2
Câu 31. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 4.
C. 2.
D. 5.
2
Câu 32. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 3.
A. m = ±1.
B. m = ±3.
C. m = ± 2.

Câu 33. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.

C. 30.

D. 8.

Câu 34. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.

C. 0, 8.

D. 7, 2.

Câu 35. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 − sin 2x.
C. −1 + 2 sin 2x.

D. 1 + 2 sin 2x.

Câu 36. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + .
C. T = e + 3.
D. T = e + 1.
e
e
Câu 37. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3

a3 2

a
3
a
3
A.
.
B. a3 3.
C.
.
D.
.
2
4
2
Câu 38. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3
3

a 6
a 15
a
5
A.
.
B.
.

C. a3 6.
D.
.
3
3
3
Câu 39. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B. 68.
C.
.
D. 34.
17
0
Câu 40. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có một hoặc hai.
- - - - - - - - - - HẾT- - - - - - - - - Trang 3/4 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

2.

C

4. A

B

5.

D

6. A

7.

D

8. A

9.

B

11. A

C

13.

10.

D

12.

D

15. A

16. A
18.

D

B

17.

B

19.

B

20.


D

21.

D

22.

D

23.

D

25.

D

24. A
26.

C

27.

B

28.


B

29.

30.

B

31.

B

33.

B

32. A
34.
36.

B

35.

C
D

37.

C


38. A
40.

C

39.
D

1

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×