Tải bản đầy đủ (.pdf) (5 trang)

Đề toán ôn thpt 12 số 3 (453)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (117.45 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 1. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
A.
.
B. 2a 2.
C.
.
D.
.
24
24
12
Câu 2. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không rút


tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo.
Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban
đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 14 năm.
Câu 3. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 10.
D. ln 14.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 4. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
x+1
Câu 5. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.

D. .
6
3
2
p
ln x
1
Câu 6. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
3
9
9
3
2
x −9
Câu 7. Tính lim
x→3 x − 3
A. −3.
B. +∞.
C. 6.

D. 3.
Câu 8. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3
. Khi đó thể tích khối lăng trụ là

4 √



a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
12
24
6
Câu 9. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng

A. 32π.
B. V = 4π.
C. 16π.
D. 8π.
Câu 10. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
.
B. a 3.
.
D.
.
A.
C.
2
2
3
Câu 11. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 0.
C. 9.
D. 7.
Câu 12. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của


A. Tăng lên n lần.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
Trang 1/5 Mã đề 1


Câu 13. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Khơng có.
C. Có một.
D. Có vơ số.
Câu 14. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
C. 8.
!2x−1
!2−x
3
3


Câu 15. Tập các số x thỏa mãn
5
5
A. [1; +∞).
B. (−∞; 1].
C. [3; +∞).

D. 30.


D. (+∞; −∞).


Câu 16. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
2
6
6
3
Câu 17. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.
C. D = (0; +∞).

D. D = R \ {0}.
Câu 18. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −3.

D. m = −1.

Câu 19. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −5.

D. −7.

d = 300 .
Câu 20. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3

3
a 3
3a
.
C. V =
.
D. V = 3a3 3.
A. V = 6a3 .

B. V =
2
2

2
Câu 21. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. 7.
D. −7.
Câu 22. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
D.
f (x)dx = f (x).

f (x)dx = F(x) + C.

[ = 60◦ , S A ⊥ (ABCD).
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối

√chóp S .ABCD là
3

3
3

a
2
a
3
a
2
B.
.
C.
.
D.
.
A. a3 3.
12
6
4
Câu 24.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 2.
C. 5.
D. 1.
Câu 25. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .

B. .
C. 3.
D. 1.
2
2
Câu 26. Phát biểu nào sau đây là sai?
1
A. lim un = c (Với un = c là hằng số).
B. lim √ = 0.
n
1
C. lim k = 0 với k > 1.
D. lim qn = 1 với |q| > 1.
n
Trang 2/5 Mã đề 1


Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
8a 3
4a 3
a 3
.
B.

.
C.
.
D.
.
A.
9
3
9
9
a
1
Câu 28. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 2.
C. 4.
D. 7.
Câu 29. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3

−5
3
−2
−1
x−2 y+2 z−3
x−2 y−2 z−3
=
=
.
B.
=
=
.
A.
2
3
4
2
2
2
x y−2 z−3
x y z−1
C. =
=
.
D. = =
.
2
3
−1

1 1
1
!
x+1
Câu 30. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
A. 2017.
B.
.
C.
.
D.
.
2018
2017
2018
Câu 31. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 10 mặt.

D. 8 mặt.

Câu 32. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.

B. 0, 3.
C. 0, 2.
D. 0, 5.

Câu 33. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a 38
3a
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 34. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?

A. 102.016.000.
B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
Câu 35. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
Câu 36. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.

C. 10.

D. 12.

Câu 37. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. n3 lần.
D. 2n2 lần.
x3 − 1
Câu 38. Tính lim
x→1 x − 1
A. 3.
B. 0.
C. −∞.
D. +∞.

Câu 39. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
8
5
7
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
3
3
3
Trang 3/5 Mã đề 1


Câu 40. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 84cm3 .
D. 48cm3 .
Câu 41. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).

C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 42. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.

C. 8.

D. 12.

Câu 43. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là
vng góc
√ BC) bằng
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S

a 57
2a 57
.
B. a 57.
C.
.
D.
A.
19
19
Câu 44. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.

C. V = S h.
D.
2
3
Câu 45. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. (4; +∞).
D.
log7 16
bằng
Câu 46. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. −4.
B. 2.
C. −2.
D.
Câu 47. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. 8.

[ = 60◦ , S O
a. Góc BAD

a 57
.
17

V = 3S h.
[6, 5; +∞).

4.

D. 6.

Câu 48. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vô số.
Câu 49. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
3
.
C.
.
D.
.
A. a .
B.
6
24
12

Câu 50. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:

3
3
3
3
A. .
B.
.
C.
.
D.
.
4
12
2
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.


C
D

3.
C

10.
12.

D

4.

5. A
7.

B

D

6.

B

8.

B
C

11.


B

13. A

14. A

15. A

16.

D

17. A

18.

B

19.

B

20.

B

21.

B


24.

25.

B

26.

D

27.

28.

D

29.

30.

B

31.

32.

B

33.


34.

B

35. A
D

36.

37.

38. A
40.

B
D

44.

C
D
B
D
C

41.

C


43.

C

45. A

C

46. A
50.

B

39. A

42.

48.

D

23.

22. A

47.
49.

B
D


1

C
D



×