Tải bản đầy đủ (.pdf) (5 trang)

Đề toán ôn thpt 12 số 3 (344)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (116.41 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1


x2 + 3x + 5
Câu 1. Tính giới hạn lim
x→−∞
4x − 1
1
B. 0.
A. − .
4

C.

1
.
4

D. 1.

3a
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt √


phẳng (S BD) bằng
a
2a
a 2
a
B. .
C.
.
D.
.
A. .
4
3
3
3
Câu 3. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −15.
D. −12.

Câu 4. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab. Giá
trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới "đây?!
"
!
5
5
D.
;3 .

A. (1; 2).
B. [3; 4).
C. 2; .
2
2
Câu 2. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

[ = 60◦ , S A ⊥ (ABCD). Biết
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng
√S .ABCD là

√ cách từ A đến cạnh S C là a. Thể tích khối chóp
3

a3 3
a
a3 2
2
3
A.
.
B. a 3.
C.
.
D.
.
6
12
4

Câu 6. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. −4.
C. 2.
D. 4.
 π
Câu 7. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
e .
e .
A. 1.
B.
C. e .
D.
2
2
2
12 + 22 + · · · + n2
Câu 8. [3-1133d] Tính lim
n3
2
1
B. .
C. +∞.
D. 0.

A. .
3
3
Câu 9. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 10. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
1
Câu 11. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 12.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Trang 1/4 Mã đề 1


Câu 13. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 6
a3 3
A.

.
B.
.
C.
.
D.
.
48
24
8
24
Câu 14. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 13 năm.
D. 10 năm.
Câu 15. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 16. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

3
3

a
a
a
15
6
5
A. a3 6.
B.
.
C.
.
D.
.
3
3
3
!
1
1
1
Câu 17. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
C. .

D. 2.
A. +∞.
B. .
2
2

Câu 18. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 108.
D. 36.
p
ln x
1
Câu 19. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
9
3
3
9

Câu 20. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
2
Câu 21. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.

Câu 22. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
A. un =
.
B. un =
.
5n − 3n2
n2

n2 + n + 1
C. un =
.
(n + 1)2

D. un =

1 − 2n
.
5n + n2


Câu 23. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 10.
D. ln 14.
Câu 24. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 20.
2,4

Câu 25. [1-c] Giá trị của biểu thức 3 log0,1 10
A. −7, 2.
B. 7, 2.

C. 30.
bằng
C. 0, 8.

D. 8.
D. 72.

Câu 26. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
Trang 2/4 Mã đề 1


(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).

Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.

C. (I) và (II).

D. (I) và (III).

Câu 27. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(4; 8).
2−n
bằng
n+1
B. −1.

Câu 28. Giá trị của giới hạn lim
A. 2.

C. 1.

D. 0.

Câu 29. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
1
3

A. 1.
B. .
C. .
D.
.
2
2
2
1
Câu 30. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 31. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
! x3 −3mx2 +m
1
Câu 32. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).
Câu 33. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2

A. 82.

B. 96.

C. 81.

D. 64.

8
x

Câu 34. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 7.
B. .
C. 5.
D.
.
2
2
Câu 35. Tính lim
x→5

2
A. − .
5

x2 − 12x + 35
25 − 5x

2
B. .
5

C. +∞.

Câu 36. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.

D. −∞.

D. 2.

Câu 37. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 1.

C. 0.

D. 2.

Câu 38. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.

C. V = 3.
D. V = 4.
Câu 39. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −6.
C. 5.
2

D. −5.

Câu 40. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 3.
D. 1.
Trang 3/4 Mã đề 1


Câu 41. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.

A.
6
12
24
Câu 42. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 0.
C. 3.
D. 2.
Câu 43. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



c a2 + b2
a b2 + c2
abc b2 + c2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2

a2 + b2 + c2
a2 + b2 + c2
x2 − 5x + 6
Câu 44. Tính giới hạn lim
x→2
x−2
A. 0.
B. 5.
C. −1.
D. 1.
2
x − 3x + 3
Câu 45. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 3.
C. x = 0.
D. x = 2.

Câu 46. √
Thể tích của khối lập phương có cạnh bằng a 2
3


2a 2
.
B. 2a3 2.
A.
C. V = a3 2.

D. V = 2a3 .
3
Câu 47. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
2
2
2
2
2
a +b
2 a +b
a +b
a + b2
Câu 48. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1

1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
15
18
9



x=t




Câu 49. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9

A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 50. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
7
8
5
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .

D. (2; 0; 0).
3
3
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3.

D

4.

5.

D

6. A

7.


D

8.

9. A
B
C

C

16.
D

18.

19. A

B

20. A
22.

B
D

23.
25. A
27.

D


31.

D

33.

C

C

26.

C
C

32.

C
B

36. A

39.

D

38.

C

D

40. A

41.

B

42.

43.

B

44.

45. A

46.

47.

B

30.
34.

B

37.


D

24.
28.

29. A

50.

D

14. A

17.

35.

B

12.

C

15.

21.

D


10. A

11.
13.

C

C

49.

B

1

B
C
B
C



×