Tải bản đầy đủ (.pdf) (5 trang)

Đề toán ôn thpt 12 số 3 (500)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (117.19 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 1.
B. −1.
C. 2.
D. .
2
x
Câu 2. [2] Tổng các nghiệm của phương trình log4 (3.2 − 1) = x − 1 là
A. 2.
B. 5.
C. 3.
D. 1.
Câu 1. [2-c] Cho hàm số f (x) =

Câu 3. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.

C. 8.



D. 20.


Câu 4. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √

3
3

a
3
a
3
a3
A. a3 3.
B.
.
C.
.
D.
.
12
3
4
Câu 5. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −6.
C. −3.
D. 0.

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 6. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. −5.
C. 0.
D. −2.
x+1
Câu 7. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
3
6
2
Câu 8. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.
C. 5.
D. 4.
Câu 9. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].

Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
23
1728
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
1
Câu 10. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3, m = 4.
Câu 11. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.


C. 2.

D. 3.

x
Câu 12.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. .
C. 1.
D. .
2
2
2
2
2x
Câu 13. [2-c] Giá trị nhỏ nhất của hàm số y = (x − 2)e trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. −2e2 .
D. 2e2 .

Câu 14. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (−∞; +∞).

D. (1; 2).
1
Câu 15. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (−∞; 3).
Trang 1/4 Mã đề 1


Câu 16. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
.
C.
.
D.
.
A. a .
B.
6
3
2
Câu 17. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.

B. x = −8.
C. x = −2.
D. x = −5.
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (3; 4; −4).
C. ~u = (2; 1; 6).
D. ~u = (1; 0; 2).
Câu 19. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 7%.
C. 0, 6%.
D. 0, 5%.
Câu 20. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng




a 6
a 6
a 6
.
B.
.
C. a 6.
D.
.
A.
6
3
2
Câu 21. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
15
9
18
Câu 22. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1

A. f 0 (0) =
.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
ln 10
x−3
bằng?
Câu 23. [1] Tính lim
x→3 x + 3
A. −∞.
B. 0.
C. 1.

D. f 0 (0) = 10.

D. +∞.

Câu 24. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (−1; 0).
Câu 25. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √


2 3
A. 3.
B. 1.
C.
.
D. 2.
3
12 + 22 + · · · + n2
Câu 26. [3-1133d] Tính lim
n3
1
2
A. +∞.
B. .
C. .
D. 0.
3
3
Câu 27. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Trang 2/4 Mã đề 1





4n2 + 1 − n + 2

bằng
Câu 28. Tính lim
2n − 3
3
A. +∞.
B. .
2
Câu 29. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. 2.

D. 1.

C. Khối lập phương.

D. Khối tứ diện đều.

Câu 30. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.

.
A.
6
24
12
2n − 3
Câu 31. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 32. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.


Câu 33. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 6
πa3 3
πa3 3

πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
2
3
Câu 34. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.
C. 6.
D. 8.
x−3 x−2 x−1
x
Câu 35. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là

A. [2; +∞).
B. (−∞; 2).
C. (2; +∞).
D. (−∞; 2].
Câu 36. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2.
B. P = 2i.
C. P =
.
D. P =
.
2
2
Câu 37. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2

4 − 2e
4 − 2e
4e + 2
!
1
1
1
Câu 38. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. +∞.
B. .
C. 2.
D. .
2
2



x = 1 + 3t




Câu 39. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương



 trình là








x = 1 + 7t
x = 1 + 3t
x = −1 + 2t
x = −1 + 2t

















.
D. 
A. 
y = −10 + 11t . B. 
y = −10 + 11t . C. 
y=1+t
y = 1 + 4t .

















z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
Trang 3/4 Mã đề 1


2n + 1
Câu 40. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. 0.
C. .
D. .
2
3
2
Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.

B.
.
C.
.
D.
.
4
12
12
6
a
1
Câu 42. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 1.
C. 4.
D. 2.
Câu 43. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số cạnh của khối chóp bằng 2n.
x+1
bằng
x→+∞ 4x + 3
1
1
A. 1.

B. .
C. .
D. 3.
4
3
Câu 45.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Câu 44. Tính lim

Câu 46. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là

1
9
2
1
A.
.
B.
.
C. .
D. .
10
10
5
5
Câu 47. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
3
2
Câu 48. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = ln x − 1.
D. y0 = 1 + ln x.
Câu 49. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3

chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 387 m.
D. 27 m.
Câu 50. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = R \ {1; 2}.
C. D = (−2; 1).
2

D. D = [2; 1].

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

2. A
B
C


5.
7.

4.

C

6.

C

8. A

B

D

9. A

10.

11. A

12.

C

13. A

14.


C

15.

B

16.

D

17.

B

18.

D

19.

B

20. A

22.

C
D


24.
26.

23.

B
D

25.

B

27.

C

28.

D

29.

B

30.

D

31.


B

33.

C

32.
34. A

35. A

36. A

37.

38.

C

39. A

40.

C

41.

D
B


43.

42. A
44.

B

45.

46.

B

47. A

48.

D

D

49.

50. A

1

D
B
D




×