Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thptqg one1 (54)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (110.45 KB, 5 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1.
Z Các khẳng định nào sauZđây là sai?
A.
Z
C.

f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).

f (t)dt = F(t) + C. B.

Z
Z

D.

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z


k f (x)dx = k
f (x)dx, k là hằng số.

Câu 2. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 0.

C. 2.

D. 1.

Câu 3. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.
D. Năm mặt.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 4. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.


Câu 5. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3 3
a3
3
A. a 3.
B.
.
C.
.
D.
.
3
12
4
Câu 6. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3 15
a3 5
a3 15
a3
.
B.
.

C.
.
D.
.
A.
3
5
25
25
Câu 7. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
d = 60◦ . Đường chéo
Câu 8. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6
3
A.
.
B.
.

C. a 6.
D.
.
3
3
3
Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 3
a 2
a 3
A.
.
B.
.
C. a3 3.
D.
.
2
4
2
Câu 10. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng




a 2
a 2
A.
.
B. a 3.
C. a 2.
D.
.
3
2
Trang 1/4 Mã đề 1


Câu 11. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.

C. 6.

D. 12.
un
Câu 12. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. +∞.
C. 0.
D. 1.


Câu 13. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 12.
D. ln 14.
Câu 14. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 16 tháng.
D. 15 tháng.
Câu 15. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Nhị thập diện đều.

D. Bát diện đều.

Câu 16. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
A. m = ± 3.
B. m = ± 2.
C. m = ±3.
D. m = ±1.
3

2

x


Câu 17. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 8%.
D. 0, 5%.
Câu 18. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 19. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {3; 3}.

D. {4; 3}.

Câu 20. Giá√trị cực đại của hàm số y√= x − 3x − 3x + 2

B. 3 − 4 2.
C. −3 + 4 2.
A. −3 − 4 2.
3

2


D. 3 + 4 2.
tan x + m
nghịch biến trên khoảng

Câu 21. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. [0; +∞).
C. (1; +∞).
D. (−∞; −1) ∪ (1; +∞).
3a
Câu 22. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
2a
a 2
A. .
B. .
C.
.
D.
.
3
4
3
3
Câu 23. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =

log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vơ số.

x2 + 3x + 5
Câu 24. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. .
D. 0.
4
4
!
1
1
1
Câu 25. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. .

C. 2.
D. 0.
2
Trang 2/4 Mã đề 1


Câu 26. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 27. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 4.

C. 3.

D. 5.

Câu 28. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 29. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.

D. 6 đỉnh, 12 cạnh, 8 mặt.
x+2
đồng biến trên khoảng
Câu 30. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 1.
D. 2.
3

Câu 31. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e3 .

D. e.

Câu 32. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

D. Khối 12 mặt đều.

C. Khối tứ diện đều.

Câu 33.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.


A.

1
dx = ln |x| + C, C là hằng số.
Z x
D.
0dx = C, C là hằng số.

B.

xα+1
+ C, C là hằng số.
α+1
Câu 34.
Z [1233d-2] Mệnh đề nào sau đây sai?
A.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z

Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

C.

xα dx =

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m = 4.

Câu 35. [1226d] Tìm tham số thực m để phương trình
B. m < 0 ∨ m > 4.

A. m ≤ 0.

Câu 36. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + 1.
D. T = e + .
e

e
Câu 37.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
k f (x)dx = f

A.
Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

( f (x) + g(x))dx =

B.
Z

f (x)dx +

Z

( f (x) − g(x))dx =
f (x)dx −
 π
x
Câu 38. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2



2 π4
3 π6
1 π
A.
e .
B. 1.
C.
e .
D. e 3 .
2
2
2
C.

f (x)g(x)dx =

Z

D.

g(x)dx.
Z
g(x)dx.

Trang 3/4 Mã đề 1


!
1
1

1
Câu 39. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. .
C. 2.
D. +∞.
2
2
Câu 40. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. [1; +∞).
D. (−∞; −3].
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.


B

3. A
5.

C

4. A

7.

D

6.

B

8.

C

C

10.

9. A

D


11.

D

12.

C

13.

D

14.

C

15. A
17.

B

19.

D

21.
23.

C
B


33.

18.

B

20.

C

22.

C

26.

D

28.

B

C

30.

29. A
31.


B

24. A

25. A
27.

16.

B

D

32. A
C

34.
D

35.

36.

37.

C

38. A

39.


C

40. A

1

C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×