Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thptqg one2 (102)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (111.24 KB, 5 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

!4x
!2−x
2
3
Câu 1. Tập các số x thỏa mãn


3
2
"
!
#
2
2
A.
; +∞ .
B. −∞; .
5
3

#
2


C. −∞; .
5

Câu 2. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.

"

!
2
D. − ; +∞ .
3
D. 1 − sin 2x.

Câu 3. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có hai.
D. Có một.
Câu 4. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền ra.
A. 216 triệu.
B. 212 triệu.
C. 210 triệu.
D. 220 triệu.

Câu 5. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3
3

a 6
a 5
a
15
.
B.
.
C. a3 6.
.
A.
D.
3
3
3
Câu 6. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 15 tháng.
D. 17 tháng.

Câu 7. Cho khối chóp S .ABC√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √
3
a 6
a3 3
2a3 6
a 3
A.
.
B.
.
C.
.
D.
.
4
12
2
9
Câu 8. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 3.


C. 2.

D. 0.

Câu 9. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy
(ABC) một
góc bằng 60◦ . Thể tích√khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
8
4
4
12
1
Câu 10. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+

1
A. xy0 = −ey + 1.
B. xy0 = ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Trang 1/4 Mã đề 1


Câu 11. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.

C. 6.

D. 4.

Câu 12. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 4}.

D. {3; 3}.

Câu 13. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
Câu 14. [1] Tập xác định của hàm số y = 2 x−1 là

A. D = R \ {1}.
B. D = R \ {0}.
C. D = R.
log2 240 log2 15

+ log2 1 bằng
Câu 15. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 3.
C. 4.
Câu 16. [4-1244d] Trong tất cả các số phức z = a + bi,
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
B.
.
C.
A. − .
16
100
2x + 1
Câu 17. Tính giới hạn lim
x→+∞ x + 1
A. 1.
B. −1.
C.

D. D = (0; +∞).


D. 1.

a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
9
.
25

D. −

23
.
100

1
.
D. 2.
2
Câu 18. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3
a3 3
3
A.
.
B. a .

C.
.
D.
.
2
3
6

Câu 19. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.
C. 36.
D. 6.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 20. Giá trị lớn nhất của hàm số y =
m−x
3
A. 0.
B. −5.
C. 1.
D. −2.
2
x − 3x + 3
Câu 21. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 0.

C. x = 3.
D. x = 1.
1 − xy
Câu 22. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 + 19
9 11 − 19
18 11 − 29
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
9
21
3


Câu 23. Tìm
giá
trị
lớn
nhất

của
hàm
số
y
=
x
+
3
+
6√− x


A. 2 + 3.
B. 3.
C. 3 2.
D. 2 3.
Câu 24. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 387 m.
D. 1587 m.
Câu 25. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3

BC là
. Khi đó thể tích khối lăng trụ là
4
Trang 2/4 Mã đề 1






a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
24
12
6
Câu 26. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.

C. 6510 m.
D. 1202 m.
Câu 27. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. 22016 .
D. e2016 .
Câu 28. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
.
B. √
.
C. 2
.
.
D. √
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 29. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là

a3
a3
a3
3
A.
.
B.
.
C. a .
D.
.
24
6
12
Câu 30. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≥ 3.
Câu 31. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m ≥ 0.
D. m > 1.
2
2n − 1
Câu 32. Tính lim 6
3n + n4
2
A. .

B. 1.
C. 2.
D. 0.
3
Câu 33. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 34. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.

D. {5; 3}.

Câu 35. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 36. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Bát diện đều.
C. Thập nhị diện đều.

D. Nhị thập diện đều.

Câu 37. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
C. lim+ f (x) = lim− f (x) = +∞.
x→a


x→a

x→a

x→a

D. lim f (x) = f (a).
x→a

Câu 38. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
D. m = ± 2.
A. m = ±1.
B. m = ±3.
C. m = ± 3.
 π
Câu 39. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A. e .
B.
e .
C.
e .
D. 1.
2

2
2
Trang 3/4 Mã đề 1


x+3
Câu 40. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 3.
C. 1.
D. Vô số.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

3.

C


2.

B

4.

B

5.

B

6. A

7.

B

8.

9. A

10.

11. A

12.

13.


B
D

14.

B

C

16.

15. A
D

17.

D

18. A

19. A

20. A

21.

D

22.


23.

C

24.

25.

C

26.

27.

C

B

D
B
C

28. A

29.

D

30.


C

31.

B

32.

D

33.

B

34.

D

35.

C

37.
39.

36.
D

C


38.

B

40.

1

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×