Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (II) và (III).
C. Cả ba mệnh đề.
−2x2
Câu 2. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
B. √ .
A. 2 .
e
2 e
trên đoạn [1; 2] là
1
C. 3 .
2e
D. (I) và (III).
D.
2
.
e3
Câu 3. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 4. Cho
Z hai hàm y Z=
A. Nếu
f (x)dx =
Z
Z
0
B. Nếu
f (x)dx =
Z
Z
C. Nếu
f (x)dx =
f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g(x)dx thì f (x) , g(x), ∀x ∈ R.
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 5. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 2.
C. 3.
D. 1.
Câu 6. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S√H ⊥ (ABCD), S A = a 5. Thể tích khối chóp S .ABCD là
√
4a3 3
2a3
4a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 7. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
√
Câu 8. [12215d] Tìm m để phương trình 4 x+
3
A. 0 ≤ m ≤ .
B. m ≥ 0.
4
1−x2
√
− 3m + 4 = 0 có nghiệm
9
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
− 4.2 x+
1−x2
Trang 1/4 Mã đề 1
Câu 9. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một hoặc hai.
D. Có một.
Câu 10. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
B. 25.
C. 5.
D. 5.
A. .
5
Câu 11. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó không rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
√
3
2
Câu 12. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. 3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.
2n − 3
bằng
Câu 13. Tính lim 2
2n + 3n + 1
A. −∞.
B. 0.
C. +∞.
√
D. −3 − 4 2.
D. 1.
Câu 14. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 1587 m.
D. 25 m.
Câu 15. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 20 mặt đều.
D. Khối 12 mặt đều.
Câu 16. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.
C. 10.
D. 6.
Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
2a3 3
a3 3
.
B.
.
C.
.
D. a3 3.
A.
3
6
3
cos n + sin n
Câu 18. Tính lim
n2 + 1
A. 1.
B. 0.
C. +∞.
D. −∞.
Câu 19. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 22.
D. 23.
Câu 20. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
D. 8, 16, 32.
A. 6, 12, 24.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
Câu 21. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
D. f 0 (0) = 1.
ln 10
Câu 22. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
A. f 0 (0) = 10.
B. f 0 (0) = ln 10.
C. f 0 (0) =
Câu 23. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − .
C. −e.
e
2e
D. −
1
.
e2
Trang 2/4 Mã đề 1
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 24. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.
B. m ≤ 0.
Câu 25. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
D. {3; 3}.
Câu 26. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3
! 3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 27.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
A.
.
B.
.
C.
.
D. .
12
4
2
4
Câu 28. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 29. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 6.
C. 4.
D. 10.
Câu 30. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
2a 3
a 3
a 3
.
B.
.
C. a 3.
.
D.
A.
2
2
3
Câu 31. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
loga 2
log2 a
Câu 32. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.
.
n
n
x3 − 1
Câu 33. Tính lim
x→1 x − 1
A. 0.
B. 3.
1 − n2
Câu 34. [1] Tính lim 2
bằng?
2n + 1
1
A. 0.
B. .
2
Câu 35. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
1
C. √ .
n
D.
1
.
n
C. −∞.
D. +∞.
1
C. − .
2
D.
C. {5; 3}.
D. {3; 4}.
1
.
3
Câu 36. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 17 tháng.
D. 16 tháng.
Câu 37. Cho
√
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
x+2
Câu 38. Tính lim
bằng?
x→2
x
A. 2.
B. 3.
C. 1.
D. 0.
Trang 3/4 Mã đề 1
√
Câu 39. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
3
6
x2
Câu 40. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
e
e
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2. A
D
3.
C
5.
7. A
4.
C
6.
C
8. A
9.
C
10.
B
11.
C
12.
B
13.
14. A
B
D
15.
18.
17. A
19.
B
20. A
C
21.
B
22.
23.
B
24.
25. A
C
D
26. A
27.
B
28.
29.
B
30.
31. A
C
D
32. A
33.
B
34.
35.
B
36.
37. A
39.
D
16.
C
D
38. A
40.
C
1
B