Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thptqg one7 (1)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (109.8 KB, 5 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

x+1
bằng
Câu 1. Tính lim
x→+∞ 4x + 3
1
1
A. .
B. .
4
3
Câu 2. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.

C. 3.

D. 1.

C. {5; 3}.

D. {4; 3}.


Câu 3. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
f (x)dx = f (x).
C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 4. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Chỉ có (II) đúng.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.

Câu 5. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng

A. −2.
B. 2.
C. −4.

D. 4.

Câu 6. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 15, 36.
D. 3, 55.
 π
Câu 7. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
A.
e .
B. e .
C. 1.
D.
e .
2
2
2


Câu 8. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
18
36
6
6
Câu 9. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 10. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và

AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. a 2.
B.
.
C. 2a 2.
D.
.
4
2
Trang 1/4 Mã đề 1


8
Câu 11. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 82.
D. 96.
Câu 12. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 13. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là

vng góc
√ Khoảng cách từ O đến (S
√ BC) bằng
√ với mặt đáy và S O = a.
a 57
a 57
2a 57
.
B.
.
C.
.
D.
A.
19
19
17
x−2
Câu 14. Tính lim
x→+∞ x + 3
2
A. − .
B. 2.
C. −3.
D.
3
Câu 15. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 1.

C. +∞.
D.

[ = 60◦ , S O
a. Góc BAD

a 57.

1.

2.

Câu 16. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

a3 6
a3 3
a3 2
a3 3
.
B.
.
C.

.
D.
.
A.
48
24
16
48
Câu 18. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
2
2
2
a 2
a 5
11a
a2 7
A.
.
B.
.
C.
.
D.
.

4
16
32
8
Câu 19. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.
C. 30.
D. 20.
Câu 20. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (−∞; 2).

Câu 21. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = 6.
Câu 22. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3
a3 3
3
A. a .

B.
.
C.
.
D.
.
2
3
6
x3 − 1
Câu 23. Tính lim
x→1 x − 1
A. 3.
B. −∞.
C. +∞.
D. 0.
x+1
Câu 24. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
6
2
3

Trang 2/4 Mã đề 1


1
Câu 25. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. − .
C. 3.
D. −3.
3
3
Câu 26. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 6
a 3
.
B.
.
C.

.
D.
.
A.
24
48
8
24
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 27. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = 0.
B. lim un = .
2
C. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 28. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
!
1
1
1
Câu 29. Tính lim
+
+ ··· +

1.2 2.3
n(n + 1)
3
A. 1.
B. 2.
C. 0.
D. .
2
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 30. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 7.
B. 4.
C. 2.
D. 1.
Câu 31. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > 1.

D. m > −1.

Câu 32. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 3.

D. 1.


C. 2.

Câu 33. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2
c a2 + b2
abc b2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 34. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1

1
1
1
A.
; +∞ .
B. − ; +∞ .
C. −∞; .
D. −∞; − .
2
2
2
2
!
1
1
1
Câu 35. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. +∞.
C. .
D. .
2
2
3
2

Câu 36. Cho hàm số y = x − 3x + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −6.
C. −3.
D. 0.
Câu 37. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. (−∞; 6, 5).

D. [6, 5; +∞).

Câu 38. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b


x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

Trang 3/4 Mã đề 1


Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
D. a 2.
A.
.
B.
.
C. a 3.
3
2
Câu 40. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
A.

.
B.
.
C.
.
D.
.
c+2
c+2
c+3
c+1
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

1. A
3.

B

5. A
7.

D


C

6.

C

10.

11. A

D

12. A
D

14.

B

15. A

C

16.

17.
19.

4.

8. A

9. A
13.

D

18.

D
B

D

20.

C

21. A

22.

B

23. A

24.

B


25.

B

26.

27.

B

28. A

29. A

30. A

31.

D

32.

33.

D

34.

35. A


36.

37. A

38.

39.

D

40. A

B

1

C
B
C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×