Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 3 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
4a 3
8a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
√
Câu 2. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể tích
khối nón đã cho
√
√ là
√
√
πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
2
6
1
Câu 3. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = R \ {1}.
D. D = (−∞; 1).
Câu 4. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 22.
C. 23.
D. 21.
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√
√ S .ABCD là
3
3
3
√
a 2
a 3
a 3
.
B. a3 3.
C.
.
D.
.
A.
2
2
4
d = 120◦ .
Câu 6. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 2a.
C. 3a.
D.
.
2
Câu 7. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −7.
B. −4.
C. −2.
D.
67
.
27
d = 300 .
Câu 8. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3
√
3a 3
a 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
Câu 9. [2] Tìm m để giá trị nhỏ nhất √
của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2 √
A. m = ±3.
B. m = ± 2.
C. m = ±1.
D. m = ± 3.
Câu 10. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m , 0.
C. m < 0.
D. m > 0.
π
Câu 11. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
3 π6
2 π4
A. e .
B. 1.
C.
e .
D.
e .
2
2
2
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 12. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. lim un = 0.
B. lim un = 1.
1
C. lim un = .
D. Dãy số un khơng có giới hạn khi n → +∞.
2
Trang 1/3 Mã đề 1
Câu 13. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −2.
D. −4.
Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
12
6
12
4
Câu 15. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2
4e + 2
4 − 2e
4 − 2e
√
√
Câu 16. Tìm giá trị lớn nhất của hàm
số
y
=
x
+
3
+
6√− x
√
√
C. 3 2.
D. 2 3.
A. 3.
B. 2 + 3.
Câu 17. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.
Câu 18. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; −1) và (0; +∞). C. (0; 1).
D. (−∞; 0) và (1; +∞).
Câu 19. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 20. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 8.
C. 12.
D. 20.
Câu 21. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
15
6
9
2
x − 5x + 6
Câu 22. Tính giới hạn lim
x→2
x−2
A. −1.
B. 5.
C. 1.
D. 0.
Câu 23. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.
C. Chỉ có (I) đúng.
Câu 24. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.
D. Cả hai đều sai.
Câu 25. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 2/3 Mã đề 1
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Cả hai câu trên sai.
C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.
√
Câu 26. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
6
36
Câu 27. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.
D. 1.
Câu 28. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
B. m = ±1.
C. m = ± 2.
D. m = ±3.
A. m = ± 3.
3a
Câu 29. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a 2
a
a
A.
.
B.
.
C. .
D. .
3
3
3
4
x+2
Câu 30. Tính lim
bằng?
x→2
x
A. 2.
B. 0.
C. 3.
D. 1.
π π
Câu 31. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 7.
C. 1.
D. −1.
x
Câu 32. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
C.
.
D. .
A. 1.
B. .
2
2
2
Câu 33. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
√
Câu 34. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
12
4
3
Câu 35. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối 12 mặt đều.
Câu 36. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 37. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.
C. 30.
D. 12.
Câu 38. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 6.
B. 2a 6.
C. a 3.
D.
.
2
Trang 3/3 Mã đề 1
Câu 39. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 20.
D. 15, 36.
Câu 40.
√ Biểu thức nào sau đây khơng
√ có nghĩa
−3
A.
−1.
B. (− 2)0 .
C. (−1)−1 .
D. 0−1 .
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/3 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2. A
B
3. A
4.
5. A
6.
B
D
7.
C
8.
B
9.
C
10.
B
11.
D
13.
15.
16.
B
20. A
B
23.
C
25.
26. A
28.
C
18. A
C
22. A
24.
C
14. A
C
17.
19.
12.
B
C
27. A
C
29. A
30. A
31.
C
32. A
33.
C
35.
C
34.
D
36. A
37.
D
38. A
39.
D
40.
D
1