Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m ≥ 0.
D. m > 1.
!
1
1
1
+ ··· +
Câu 2. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. 2.
C. +∞.
D. .
2
2
Câu 3. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a =
.
log2 a
loga 2
√
Câu 4. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng √
√
√
3a
3a 58
3a 38
a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
cos n + sin n
Câu 5. Tính lim
n2 + 1
A. −∞.
B. 1.
C. +∞.
D. 0.
Câu 6. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
A.
.
B. √ .
n
n
C.
sin n
.
n
D.
1
.
n
Câu 7. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 8. Tính lim
x→+∞
x−2
x+3
2
D. − .
3
Câu 9. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B. a 2.
C. a 3.
D.
.
2
3
A. 2.
B. 1.
C. −3.
Câu 10. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
b a2 + c2
abc b2 + c2
c a2 + b2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 11. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.
C. 10.
√
√
Câu 12. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x
√
A. 2 + 3.
B. 3.
C. 2 3.
Câu 13. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.
C. 6.
D. 8.
√
D. 3 2.
D. 4.
Trang 1/4 Mã đề 1
Câu 14. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 2.
C. 3.
D. +∞.
Câu 15. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.
C. Cả hai đều đúng.
D. Chỉ có (II) đúng.
Câu 16. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
3
a 3
a3 2
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
12
4
12
6
Câu 17. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 18. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
24
48
8
24
Câu 19. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 1587 m.
D. 25 m.
Câu 20. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có một.
D. Có hai.
π π
3
Câu 21. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. −1.
C. 3.
D. 7.
Câu 22. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.
C. 10 năm.
D. 7 năm.
Câu 23. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 14 năm.
D. 11 năm.
Câu 24. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. m ≥ 3.
2−n
Câu 25. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 0.
C. 2.
D. 1.
Trang 2/4 Mã đề 1
Câu 26. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−1; 1).
D. (−∞; −1).
Câu 27. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.
√
A. 8.
B. 3 3.
C. 9.
D. 27.
Câu 28. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].
D. D = R.
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.
D. 6 mặt.
2
Câu 30. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 31. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a
√
√
a3 15
a3 5
a3 15
a3
.
B.
.
C.
.
D.
.
A.
3
25
25
5
7n2 − 2n3 + 1
Câu 32. Tính lim 3
3n + 2n2 + 1
2
7
C. 0.
D. - .
A. 1.
B. .
3
3
1 3
Câu 33. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; 3).
Câu 34. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = 21.
D. P = −21.
Câu 35. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 36. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
B. m = ± 3.
C. m = ±3.
D. m = ±1.
A. m = ± 2.
Câu 37. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
x2 − 5x + 6
Câu 38. Tính giới hạn lim
x→2
x−2
A. 1.
B. 0.
C. 5.
D. −1.
Câu 39. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m
√
√
A. 8 2.
B. 16.
C. 7 3.
D. 8 3.
√
Câu 40. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vơ số.
C. 62.
D. 64.
- - - - - - - - - - HẾT- - - - - - - - - Trang 3/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3.
D
4.
5.
D
6. A
7. A
8.
9. A
D
B
15.
14.
D
17.
D
12.
C
13.
B
16. A
18. A
C
20.
B
21. A
22.
23.
D
D
B
24. A
25. A
27.
C
10. A
11.
19.
B
26.
C
28.
B
D
30.
D
31.
32.
D
33.
C
34.
D
35.
C
36.
D
37.
38.
D
39.
40.
C
1
B
D
B