Tải bản đầy đủ (.pdf) (4 trang)

Đề ôn thi thptqg one1 (439)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (110.01 KB, 4 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 3 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 2. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.
Câu 3. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (1; −3).
Câu 4. [1] Đạo hàm của hàm số y = 2 là

D. (0; −2).

x

A. y0 = 2 x . ln x.


B. y0 = 2 x . ln 2.

Câu 5. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.

C. y0 =

1
.
ln 2

C. {3; 4}.

D. y0 =

1
.
2 x . ln x

D. {5; 3}.

Câu 6. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.424.000.
D. 102.423.000.

Câu 7. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Tứ diện đều.

D. Bát diện đều.

Câu 8. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (2; 4; 6).
D. (1; 3; 2).
√3
4
Câu 9. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
7
5
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 10. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.

C. 10.

D. 6.


Câu 11. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 6 mặt.

D. 3 mặt.
x+2
Câu 12. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 1.
C. Vô số.
D. 3.
Câu 13. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 4.
C. 0, 5.
D. 0, 3.
!4x
!2−x
2
3
Câu 14. Tập các số x thỏa mãn


#
" 3 ! 2

"
!
#
2
2
2
2
A. −∞; .
B.
; +∞ .
C. − ; +∞ .
D. −∞; .
5
5
3
3
Trang 1/3 Mã đề 1


Câu 15.
có nghĩa
√ Biểu thức nào sau đây khơng
−3
−1
−1.
B. 0 .
A.
4x + 1
bằng?
x→−∞ x + 1

A. −4.
B. 4.
x+2
bằng?
Câu 17. Tính lim
x→2
x
A. 1.
B. 2.

C. (−1)−1 .


D. (− 2)0 .

C. 2.

D. −1.

C. 3.

D. 0.

Câu 16. [1] Tính lim

Câu 18. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
Câu 19.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
12
4
4


3
D.
.
2

Câu 20. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 0.


C. 7.

D. 5.

Câu 21. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
.
A. 26.
B. 2.
C. 2 13.
D.
13
2mx + 1
1
Câu 22. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 1.
C. −5.
D. 0.
Câu 23. Dãy số nào có giới hạn bằng 0?
!n

6
n3 − 3n
A. un =
.
B. un =
.
n+1
5

C. un = n − 4n.
2

!n
−2
D. un =
.
3

Câu 24. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 2.
D. 3.
x−2 x−1
x
x+1
+
+
+

và y = |x + 1| − x − m (m là tham
Câu 25. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. (−∞; −3).
D. [−3; +∞).


Câu 26.
√ Tìm giá trị lớn nhất của hàm số y = x + 3 + 6 −√x

A. 3 2.
B. 3.
C. 2 + 3.
D. 2 3.
1
Câu 27. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.
C. 2.
D. −2.
Câu 28. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng




a 3
a 3
2a 3
A.
.
B.
.
C.
.
D. a 3.
2
3
2
Trang 2/3 Mã đề 1


Câu 29. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2

A. √
.
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 30. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 31. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là

2a3
2a3 3
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3

3
3
Câu 32. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
cos n + sin n
Câu 33. Tính lim
n2 + 1
A. 0.
B. 1.
C. −∞.
D. +∞.
Câu 34.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

k f (x)dx = f


B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 35. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −9.
C. −15.
D. −5.
Câu 36. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 6.

C. 8.

D. 10.

Câu 37. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 18.
A. 27.

B. 12.
C.
2
Câu 38. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4
4
4
Z 3
x
a
a
Câu 39. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 28.

D. P = 4.
Câu 40. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là

a3 6
2a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
4
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 3/3 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

3.

D

4.

5.

D

6.

C

8.

C

7. A
9.

B


10.

11.

B

12. A
D

13.

B

14.

15.

B

16.

17.

B

18. A

19.


B

20. A

21.

D

22.

23.

D

24.

25. A

C
B

D
C

26. A

27.

D


28.

29. A
31.

B

B

30. A
32.

C

33. A

34.

35. A

36.

37.

D

38.

39.


D

40. A

1

D
C
B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×