Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thptqg one2 (550)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (111.38 KB, 5 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 3 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 2. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là


√ hình chóp S .ABCD với mặt
2
2
2
a 7
11a
a2 5
a 2
.
B.
.
C.
.
D.
.
A.
4
8
32
16
Câu 3. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Câu 4. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a


x→a

C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

x→a

Câu 5. Giá trị của lim (3x2 − 2x + 1)
A. +∞.

x→1

B. 2.

C. 3.

D. 1.

Câu 6. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối bát diện đều.
D. Khối lập phương.
Câu 7. [4-1246d] Trong tất cả √
các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất

√ của |z|
C. 1.
D. 3.
A. 2.
B. 5.
Câu 8. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −5.
C. −7.

D. −3.

Câu 9. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 0.

Câu 10. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. 3.
C. 8.

D. 1.
D. 6.
Trang 1/3 Mã đề 1



Câu 11. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
36
6
12

Câu 12. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.
D. −1 + sin x cos x.
!2x−1
!2−x
3
3
Câu 13. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [1; +∞).
C. [3; +∞).
D. (+∞; −∞).
Câu 14. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).

Câu 15. Xác định phần ảo của số √
phức z = ( 2 + 3i)2 √
A. 7.
B. −6 2.
C. 6 2.

D. −7.
Câu 16. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Khơng có.
D. Có một.
2x + 1
Câu 17. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 2.
C. 1.
D. −1.
2
Câu 18. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
.
B. a 3.
C.
.
D.

.
2
3
2
!
3n + 2
2
Câu 19. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 2.
D. 4.
Câu 20. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.
C. 12.
D. 10.
Z 1
Câu 21. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 0.

B. 1.

C.


1
.
4

Câu 22. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. 1.

D.

1
.
2

D. −1.

Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 40a .
B. 20a .
C. 10a .
D.
.

3
Trang 2/3 Mã đề 1


Câu 24. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 25. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.424.000.
D. 102.016.000.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 26. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].

B. (−∞; 2).
C. (2; +∞).
D. [2; +∞).
Câu 27.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
A.
Z x
Z
xα+1
α
C.
x dx =
+ C, C là hằng số.
D.
dx = x + C, C là hằng số.
α+1
Câu 28. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 9 mặt.

D. 6 mặt.

d = 300 .
Câu 29. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0

Độ dài cạnh bên CC = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3

3
a 3
3a
A. V = 3a3 3.
.
C. V =
.
D. V = 6a3 .
B. V =
2
2
Câu 30. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
= .
C. lim [ f (x) − g(x)] = a − b.
D. lim
x→+∞
x→+∞ g(x)
b
x−2 x−1

x
x+1
Câu 31. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. [−3; +∞).
D. (−3; +∞).
Câu 32. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
D. 68.
A. 5.
B. 34.
C.
17
Câu 33. Khối đa diện đều loại {3; 5} có số cạnh

A. 30.
B. 20.
C. 8.
D. 12.
Câu 34. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 27 m.
D. 387 m.
Câu 35. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 6.
D. V = 4.
Trang 3/3 Mã đề 1


Câu 36. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.
C. y0 = 1 + ln x.
D. y0 = x + ln x.
1
Câu 37. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3

biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 38. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Giảm đi n lần.
x+2
đồng biến trên khoảng
Câu 39. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. Vô số.
D. 2.
un
Câu 40. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. +∞.
C. 0.
D. −∞.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/3 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3. A
5.

4. A
B

6. A

7. A

8. A

9. A

10.

11.
13.

D
B


15.
17.

C

12.

B

14.

B

16. A

C
B

18.

C
C

19.

D

20.

21.


D

22.

23.

B

24.

B

25.

C

26.

27.

C

28.

B
C
D
C


29.

B

30.

31.

B

32.

C

34.

C

36.

C

33. A
35.
37.
39.

D

D


D

38.

C
D

40.

1

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×