Tải bản đầy đủ (.pdf) (630 trang)

geomicrobiology

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (12.91 MB, 630 trang )

G
E
O
MI
C
R
O
BI
O
L
OG
Y
Fif
t
h

Edi
t
i
o
n
CRC_7906_FM.indd iCRC_7906_FM.indd i 11/11/2008 5:11:57 PM11/11/2008 5:11:57 PM
CRC_7906_FM.indd iiCRC_7906_FM.indd ii 11/11/2008 5:11:58 PM11/11/2008 5:11:58 PM
CRC Press is an imprint of the
T
aylor & Francis Group, an
i
nform
a
business


Boca Raton London New York
G
E
O
MI
C
R
O
BI
O
L
OG
Y
Fif
t
h

Edi
t
i
o
n
H
enry Lutz Ehrlic
h
D
ianne K. Newman
CRC_7906_FM.indd iiiCRC_7906_FM.indd iii 11/11/2008 5:11:58 PM11/11/2008 5:11:58 PM
C
R

C
Pres
s
T
aylor & Francis Grou
p
6
000 Bro
k
en Soun
d
Par
k
way NW, Suite 30
0
Boca Raton,
F
L 33487-274
2
©
2009
b
y Tay
l
or & Francis Group, LLC
C
RC Press is an imprint of Ta
y
lor & Francis Group, an Informa busines
s

N
o c
l
aim to ori
g
ina
l
U.S. Government wor
ks
P
rinte
d
in t
h
e Unite
d
States o
f
America on aci
d
-
f
ree paper
10
9
8 7
6

5
4 3 2

1
I
nternational Standard Book Number-13: 978-0-8493-7906-2 (Hardcover)
T
his book contains information obtained from authentic and highl
y
regarded sources. Reasonable efforts have been
m
ade to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid
-
ity o
f
a
ll
materia
l
s or t
h
e consequences o
f
t
h
eir use. T
h
e aut
h
ors an
d
pu
bl

is
h
ers
h
ave attempte
d
to trace t
h
e copyrig
h
t
h
olders of all material reproduced in this publication and apologize to cop
y
right holders if permission to publish in this
f
orm has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
recti
f
y in any
f
uture reprint.
E
xcept as permitted under U.S. Cop
y
right Law, no part of this book ma
y
be reprinted, reproduced, transmitted, or uti-
l
ize

d
in any
f
orm
b
y any e
l
ectronic, mec
h
anica
l
, or ot
h
er means, now
k
nown or
h
erea
f
ter invente
d
, inc
l
u
d
ing p
h
otocop
y
-

ing, micro
f
i
l
ming, an
d
recor
d
ing, or in any in
f
ormation storage or retrieva
l
system, wit
h
out written permission
f
rom t
h
e
p
ublishers.
F
or permission to photocopy or use material electronically from this work, please access www.copyright.com (http:/
/
www.cop
y
right.com/) or contact the Cop
y
right Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variet

y
of users. For orga
-
n
izations t
h
at
h
ave
b
een grante
d
a p
h
otocopy
l
icense
b
y t
h
e CCC, a separate system o
f
payment
h
as
b
een arrange
d
.
Tra

d
emar
k

N
otice
:
Product or corporate names ma
y
be trademarks or registered trademarks, and are used onl
y
for
identification and explanation without intent to infrin
g
e
.
Li
b
rary o
f
Congress Cata
l
oging-in-Pu
bl
ication Data
Eh
r
l
ic
h

, Henry Lutz, 1925
-
G
eomicrobiolog
y
/ Henr
y
Lutz Ehrlich. 5th ed. / and Dianne K. Newman
.
p
. cm.
Inc
l
u
d
es
b
i
bl
iograp
h
ica
l
re
f
erences an
d
in
d
ex.

ISBN 978-0-8493-7906-2
(
alk.
p
a
p
er
)
1. Geomicrobiology. I. Newman, Dianne K. II. Title.
Q
R103.E437 200
9
5
51.
9
dc2
2
2
00802
9
57
0
Visit the Ta
y
lor & Francis Web site at
h
ttp://www.tay
l
oran
df

rancis.co
m
a
nd the CRC Press Web site a
t
h
tt
p
://www.crc
p
ress.co
m
CRC_7906_FM.indd ivCRC_7906_FM.indd iv 11/11/2008 5:11:58 PM11/11/2008 5:11:58 PM
D
e
d
icati
o
n
W
e dedicate this edition to Terry Beveridge:
d
ear
f
riend, inspiring mentor, and geomicrobiologist par excellence
.
CRC_7906_FM.indd vCRC_7906_FM.indd v 11/11/2008 5:11:58 PM11/11/2008 5:11:58 PM
CRC_7906_FM.indd viCRC_7906_FM.indd vi 11/11/2008 5:11:59 PM11/11/2008 5:11:59 PM
vii
C

ontents
P
re
f
ace
.
xix
A
ut
h
or
s

x
x
i
1
Chapter Introduction

1
R
eferences

3
2
Chapter
Earth as a Microbial Habitat

t
5

2.1 Geolo
g
icall
y
Important Features

5
2.2 Bios
p
here
.
1
0
2
.
3

S
ummary

1
1
Re
f
e
r
e
n
ces


1
1
3
Chapter
O
ri
g
in of Life and Its Earl
y
Histor
y


1
5
3
.1 Be
g
innin
gs

1
5
3
.1.1 Or
i
g
i
n o
f

L
if
e on Eart
h
: Pansperm
ia

.
1
5
3
.1.2 Or
igi
n o
f
L
if
e on Eart
h
:
d
e novo
A
ppearance

1
6
3
.1.3 Life from Abioticall
y

Formed Or
g
anic Molecules in Aqueou
s
So
l
ut
i
on (Organ
i
c Soup T
h
eory
)

.
1
6
3
.1.4 Sur
f
ace Meta
b
o
li
sm T
h
eor
y



1
8
3
.1.
5
Ori
g
in of Life throu
g
h Iron Monosul de Bubbles in Hadean
O
cean at t
h
e Inter
f
ace o
f
Su
l

d
e-Bear
i
ng Hy
d
rot
h
erma
l

Solution and Iron-Bearing Ocean Water

r
1
9
3
.2 Evolution of Life throu
g
h the Precambrian: Biolo
g
ical
an
d
B
i
oc
h
em
i
ca
l
Benc
h
mar
ks

.
2
0
3

.2.1 Ear
ly
Evo
l
ut
i
on Accor
di
n
g
to Or
g
an
i
c Soup Scenar
io


2
1
3
.2.2 Earl
y
Evolution Accordin
g
to Surface Metabolist Scenari
o

2
7

3
.
3
E
vid
ence
.
2
8
3
.
4

S
ummar
y

3
1
Re
f
e
r
e
n
ces

3
2
4

Cha
p
ter
Lithosphere as Microbial Habitat

t
3
7
4
.
1 Rock and Minerals

3
7
4.2 M
i
nera
l

S
o
il

.
3
9
4.2.1 Or
igi
n o
f

M
i
nera
l
So
il


3
9
4.2.2 Some Structural Features of Mineral Soil

4
0
4.2.
3
E
ff
ects o
f
P
l
ants an
d
An
i
ma
l
s on
S

o
il
E
v
o
l
ut
i
o
n

.
4
2
4.2.4 E
ff
ects o
f
M
i
cro
b
es on
S
o
il
E
v
o
l

ut
i
on

4
2
4.2.
5
Effects of Water on Soil Erosion

4
3
4.2.
6
Water Distribution in Mineral
S
oi
l

.
4
3
4.2.7 Nutr
i
ent Ava
il
a
bili
t
y


i
n M
i
nera
l
So
il

4
4
4.2.8 Some Ma
j
or Soil T
y
pe
s

4
5
4.2.9 Types o
f
M
i
cro
b
es an
d
T
h

e
i
r D
i
str
ib
ut
i
on
i
n M
i
nera
l
So
il

.
4
7
CRC_7906_FM.indd viiCRC_7906_FM.indd vii 11/11/2008 5:11:59 PM11/11/2008 5:11:59 PM
v
iii

C
ontent
s
4.3 Or
g
anic Soil

s

4
9
4.4 The Dee
p
Subsurface

5
0
4.5 Summary
.
5
1
R
eferences

5
2
5
Chapter
T
h
e
Hydrosphere as Microbial Habitat

t
5
7
5

.1 The Ocean
s

5
7
5
.1.1 Physical Attribute
s

.
5
7
5
.1.2
O
cean in Motion

5
9
5.1.3 Chemical and Physical Properties of Seawater

r
6
2
5
.1.4 Microbial Distribution in Water Column and Sediments
.
6
8
5.1.5 Effects of Temperature, Hydrostatic Pressure, and Salinity

on Microbial Distribution in Ocean
s

7
0
5
.1.6 Dominant Phytoplankters and Zooplankters in Oceans
.
7
1
5.1.7 Plankters of Geomicrobial Interest

t
7
2
5
.1.8 Bacterial Flora in Oceans

7
2
5
.2 Freshwater Lake
s

.
7
3
5.2.1 Some Physical and Chemical Features of Lakes

7

4
5
.2.2 Lake Bottom
s

7
6
5
.2.3 Lake Fertilit
y

.
7
7
5
.2.4 Lake E
v
olutio
n

7
7
5
.2.
5
Microbial Po
p
ulations in Lake
s



7
7
5
.3 River
s

.
7
8
5
.4
G
round
w
aters

7
9
5
.
5
Summar
y

8
2
Re
f
e

r
e
n
ces
.

.
8
3
6
Chapter
G
eomicrobial Processes: Ph
y
siolo
g
ical and Biochemical Overview

8
9
6
.1 T
y
pes of Geomicrobial A
g
ents

8
9
6

.2 Geomicrobiall
y
Important Ph
y
siolo
g
ical Groups of Prokar
y
otes

9
0
6
.3 Role of Microbes in Inorganic Conversions in Lithosphere
and H
y
drospher
e


9
1
6
.4 T
y
pes of Microbial Activities In uencin
g
Geolo
g
ical Processes


9
2
6
.5 Microbes as Catalysts of Geochemical Processes
.
9
3
6
.5.1 Catabolic Reactions: Aerobic Res
p
iratio
n


9
4
6
.
5
.2 Catabolic Reactions: Anaerobic Res
p
iratio
n

9
6
6
.5.3 Catabolic Reactions: Respiration Involving Insolubl
e

Inor
g
anic Substrates as Electron Donors or Acceptors

9
8
6
.
5
.4 Catabolic Reactions: Fermentation

1
0
0
6
.5.5 How Energy Is Generated by Aerobic and
A
naero
bic
Respirers and Fermenters Durin
g
Catabolism

10
1
6
.
5
.6 How Chemolithoautotro
p

hic Bacteria (Chemos
y
ntheti
c
Autotrop
h
s) Generate Re
d
uc
i
ng Powe
r

f
or Ass
i
m
il
at
i
n
g
CO
2
and Convertin
g
It into Or
g
anic Carbon


10
3
6
.
5
.7 How Photos
y
nthetic Microbes Generate Ener
gy
and Reducing Power

r
1
0
3
6
.5.8 Anabolism: How Microbes Use Ener
gy
Trapped in Hi
g
h-Ener
gy
Bonds to Drive Ener
gy
-Consumin
g
Reaction
s

10

5
6
.5.9 Carbon Assimilation by Mixotrophs, Photoheterotrophs,
and Heterotro
p
hs

10
8
CRC_7906_FM.indd viiiCRC_7906_FM.indd viii 11/11/2008 5:11:59 PM11/11/2008 5:11:59 PM
C
ontents
i
x
6.6 Microbial Mineralization of Organic Matter

r
10
8
6
.7 Microbial Products of Metabolism That Can Caus
e
G
eom
i
cro
bi
a
l
Trans

f
ormat
i
on
s

11
0
6
.8 Ph
y
sical Parameters That In uence Geomicrobial Activit
y


11
0
6
.9 Summar
y

11
2
R
e
f
erences
.
11
3

7
C
ha
p
ter Nonmo
l
ecu
l
ar Met
h
o
d
s
i
n Geom
i
cro
bi
o
l
ogy

11
7
7.1 Intro
d
uct
i
on


11
7
7.2 Detection, Isolation, and Identi cation of Geomicrobiall
y
Active
O
rganism
s

11
8
7.
2
.
1
In
S
itu O
b
servat
i
on o
f
Geom
i
cro
bi
a
l
Agents


11
8
7.2.2 Identi cation b
y
Application of Molecular Biolo
g
ical Technique
s

12
0
7.3 Sampling
12
0
7.3.1 Terrestr
i
a
l
Sur
f
ace/Su
b
sur
f
ace Samp
li
n
g


12
1
7.3.2 Aquatic Samplin
g

12
1
7.3.3 Sample Storag
e

12
2
7.3.4 Cu
l
ture Iso
l
at
i
on an
d
C
h
aracter
i
zat
i
on o
f
Act
i

ve Agents
from Environmental Sam
p
les

12
4
7.4
I
n
S
it
u
S
tudy of Past Geomicrobial Activity
12
5
7.
5
In
S
it
u
Stu
d
y o
f
Ongo
i
ng Geom

i
cro
bi
a
l
Act
i
v
i
ty

12
6
7.6 Laborator
y
Reconstruction of Geomicrobial Processes in Nature

12
8
7.7 Quantitative Study of Growth on Surfaces 13
2
7.8 Test
f
or D
i
st
i
ngu
i
s

hi
ng
b
etween Enzymat
i
c an
d
Nonenzymat
ic
Geomicrobial Activit
y

13
4
7.9 Study of Reaction Products of Geomicrobial Transformatio
n

1
3
4
7.
10

S
ummary

13
5
Re
f

e
r
e
n
ces

13
5
8
C
ha
p
ter Mo
l
ecu
l
ar Met
h
o
d
s
i
n Geom
i
cro
bi
o
l
og
y

1
3
9
8
.1 Intro
d
uct
i
on 1
3
9
8.2 Who Is There? Identi cation of Geomicrobial Or
g
anisms

13
9
8.2.1 Culture-Inde
p
endent Methods

1
3
9
8.2.2 New Cu
l
tur
i
ng Tec
h

n
i
que
s

14
1
8.3 W
h
at Are T
h
e
y
Do
i
n
g
? De
d
uc
i
n
g
Act
i
v
i
t
i
es

of

G
eom
i
cro
bi
a
l
Or
g
anisms

14
1
8.3.1 S
i
ng
l
e-Ce
ll
Isotop
i
c Tec
h
n
i
que
s
14

2
8.3.2 S
i
n
gl
e-Ce
ll
Meta
b
o
li
te Tec
h
n
i
que
s

14
4
8.3.3 Communit
y
Techniques Involvin
g
Isotopes

14
5
8.3.4 Commun
i

ty Tec
h
n
i
ques Invo
l
v
i
ng Genom
i
c
s

1
4
6
8.3.5 Probin
g
for Expression of Metabolic Gene
s
or Their Gene Pr
oducts


14
7
8.4 How Are T
h
ey Do
i

ng It? Unrave
li
ng t
h
e Mec
h
an
i
sms
o
f
Geom
i
cro
bi
a
l
Or
g
an
i
sms

14
7
8.4.1 Genetic A
pp
roaches

14

8
8.4.2 B
i
o
i
n
f
ormat
i
c Approac
h
e
s

15
1
8.4.3 Fo
ll
ow-Up Stu
di
e
s

15
1
8.
5
Summar
y


1
5
2
R
e
f
erences
.
1
5
2
CRC_7906_FM.indd ixCRC_7906_FM.indd ix 11/11/2008 5:11:59 PM11/11/2008 5:11:59 PM
x

C
ontents
9
Chapter Microbial Formation and De
g
radation of Carbonates

1
5
7
9.1 Distribution of Carbon in Earth’s Crust

t
1
5
7

9.2 Biolo
g
ical Carbonate Depositio
n

1
5
7
9.2.1 H
i
stor
i
ca
l
Perspect
i
ve o
f
Stu
d
y o
f
Car
b
onate Depos
i
t
i
o
n

1
5
8
9.2.2 Basis for Microbial Carbonate Depositio
n


1
6
1
9.2.3 Conditions for Extracellular Microbial Carbonate Preci
p
itatio
n


16
4
9.2.4 Car
b
onate Depos
i
t
i
on
b
y Cyano
b
acter
ia


16
7
9
.2.5 Possible Model for Oolite Formation

16
8
9.2.6 Structural or Intracellular Carbonate Deposition b
y
Microbes

16
8
9.2.7 Mo
d
e
l
s
f
or S
k
e
l
eta
l
Car
b
onate Format
i

on 1
7
1
9
.2.8 Microbial Formation of Carbonates
O
ther Than
Those of Calcium

1
7
3
9
.2.8.1 So
di
um Car
b
onate 1
7
3
9
.2.8.2 Man
g
anous Carbonat
e


1
7
4

9
.2.8.3 Ferrous Carbonat
e


1
7
6
9
.2.8.4 Stront
i
um Car
b
onat
e
1
7
7
9
.2.8.5 Ma
g
nesium Carbonate

1
7
7
9.3 Biode
g
radation of Carbonates


1
7
8
9.3.1 B
i
o
d
egra
d
at
i
on o
f
L
i
mestone 1
7
8
9.3.2 C
y
ano
b
acter
i
a, A
lg
ae, an
d
Fun
gi

T
h
at Bore
i
nto L
i
meston
e


18
0
9.4 Biolo
g
ical Carbonate Formation and De
g
radation and the Carbon C
y
cle

1
8
3
9.5 Summary 1
8
4
Refe
r
e
n

ces

18
4
1
C
ha
p
ter
0
G
eom
i
cro
bi
a
l
Interact
i
ons w
i
t
h
S
ili
co
n
1
9
1

10.1 D
i
str
ib
ut
i
on an
d
Some C
h
em
i
ca
l
Propert
i
e
s
1
9
1
10.2 B
i
o
l
og
i
ca
ll
y Important Propert

i
es o
f
S
ili
con an
d
Its Compoun
ds


19
2
10.3 Bioconcentration of Silico
n

19
3
10.3.1 Bacter
i
a 19
3
10.3.2 Fung
i

19
5
10.3.3 Diatom
s


19
5
10.4 B
i
omo
bili
zat
i
on o
f
S
ili
con an
d
Ot
h
er Const
i
tuents o
f
S
ili
cates
(B
i
oweat
h
er
i
ng

)


19
8
10.4.1 Solubilization b
y
Li
g
and
s

19
8
10.4.2 So
l
u
bili
zat
i
on
b
y Ac
ids
20
0
10.4.3 So
l
u
bili

zat
i
on
b
y A
lk
a
li

20
1
10.4.4 Solubilization b
y
Extracellular Pol
y
saccharide

20
2
10.4.5 Depolymerization of Polysilicates 2
0
2
10.5 Role of Microbes in the Silica C
y
cle

20
2
10.6 Summar
y



20
3
R
e
f
erences
.
2
0
4
1
C
ha
p
ter
1
G
eom
i
cro
bi
o
l
ogy o
f
A
l
um

i
num: M
i
cro
b
es an
d
Baux
i
te
20
9
11.1 Intro
d
uct
i
on
20
9
11
.
2 M
i
cro
bi
a
l
Ro
l
e

i
n Baux
i
te Format
i
on

21
0
11
.
2
.
1
N
ature of Bauxit
e


21
0
11.2.2 B
i
o
l
og
i
ca
l
Ro

l
e
i
n Weat
h
er
i
ng o
f
t
h
e Parent Roc
k
Mater
i
a
l

21
0
11.2.3 Weat
h
er
i
n
g
P
h
as
e


21
1
11
.
2
.
4 Bauxite Maturation Phas
e


21
1
CRC_7906_FM.indd xCRC_7906_FM.indd x 11/11/2008 5:11:59 PM11/11/2008 5:11:59 PM
C
ontents
xi
11.2.5 Bacterial Reduction of Fe(III) in Bauxites from Differen
t

L
ocat
i
o
n
s


21
4

11.2.
6

O
ther
O
bser
v
ations of Bacterial Interaction
w
ith Bauxite
21
4
11
.
3

S
ummar
y


21
5
Re
f
e
r
e
n

ces

21
5
1
Chapter
2
G
eomicrobial Interactions with Phos
p
horus

21
9
12.1 Biolo
g
ical Importance of Phosphoru
s


21
9
12.2 Occurrence in Earth’s Crust

t
21
9
12.3 Convers
i
on o

f
Organ
i
c
i
nto Inorgan
i
c P
h
osp
h
orus an
d
Synt
h
es
is
of Phos
p
hate Ester
s

22
0
12.4 Ass
i
m
il
at
i

on o
f
P
h
osp
h
orus
22
1
12.5 Microbial Solubilization of Phosphate Minerals

22
2
12.6 Microbial Phos
p
hate Immobilization

22
3
12.6.1 Phosphorite Deposition
22
3
12.
6
.1.1 Authigenic Formation
s

22
4
12.6.1.2 Dia

g
enetic Formatio
n

22
6
12.6.2 Occurrences of Phosphorite Deposit
s

22
6
12.
6
.3 Deposition of Other Phosphate Minerals

22
6
12.7 Microbial Reduction of Oxidized Forms of Phos
p
horu
s


22
7
12.8 M
i
cro
bi
a

l
Ox
id
at
i
on o
f
Re
d
uce
d
Forms o
f
P
h
osp
h
oru
s

22
8
12.9 M
i
cro
bi
a
l
Ro
l

e
i
n t
h
e P
h
osp
h
orus Cyc
le


22
9
12
.
10

S
ummar
y


22
9
R
e
f
erences
.


22
9
1
C
ha
p
ter
3
G
eomicrobially Important Interactions with Nitrogen 2
3
3
13.1 Nitrogen in Biosphere 2
3
3
13.2 M
i
cro
bi
a
l
Interact
i
ons w
i
t
h
N
i

troge
n

23
3
13.2.1 Ammoni catio
n

23
3
13.2.2 Nitri cation
2
3
5
1
3
.2.
3
Ammon
i
a
O
x
id
at
i
on

23
5

13.2.4 Nitrite Oxidation

23
6
13.2.
5
Heterotro
p
hic Nitri catio
n

2
3
6
13.2.
6
Anaerobic Ammonia Oxidation
(
Anammox
)

23
6
13.2.7 Denitri catio
n


23
7
13.2.8 Nitrogen Fixation

2
3
8
13.3 M
i
cro
bi
a
l
Ro
l
e
i
n t
h
e N
i
trogen Cyc
l
e

23
9
13
.
4

S
ummar
y



24
0
Re
f
e
r
e
n
ces
.

24
0
1
Chapter
4
G
eomicrobial Interactions with Arsenic and Antimon
y

24
3
14
.
1 Introduction

24
3

14.2 Arsen
ic
.

2
4
3
14
.
2
.
1 D
i
str
ib
ut
i
on

24
3
14.2.2 Some Chemical Characteristics

24
3
14.2.3 Tox
i
c
i
t

y

24
4
14.2.4 M
i
cro
bi
a
l

O
x
id
at
i
on o
f
Re
d
uce
d
Forms o
f
Arsen
i
c

24
5

14.2.4.1 Aerobic Oxidation of Dissolved Arseni
c


24
5
14.2.4.2 Anaero
bi
c
O
x
id
at
i
on o
f
D
i
sso
lv
e
d
Arsen
ic
2
4
7
CRC_7906_FM.indd xiCRC_7906_FM.indd xi 11/11/2008 5:12:00 PM11/11/2008 5:12:00 PM
x
ii


C
ontents
14.2.5 Interaction with Arsenic-Containin
g
Minerals

24
7
14.2.6 Microbial Reduction of Oxidized Arsenic S
p
ecie
s

25
0
14.2.7 Arsen
i
c Resp
i
rat
i
on
25
1
14.2.
8
Direct
O
bser

v
ations of Arsenite
O
xidation and Arsenate
Reduct
i
o
n In
S
it
u

2
5
4
14.3 Ant
i
mon
y

25
6
14.3.1 Antimony Distribution in Earth’s Crust

t
25
6
14.3.2 Microbial Oxidation of Antimon
y
Compound

s

25
6
14.3.3 M
i
cro
bi
a
l
Re
d
uct
i
on o
f
Ox
idi
ze
d
Ant
i
mony M
i
nera
l
s 2
5
7
14

.
4

S
ummar
y


2
5
7
Re
f
e
r
e
n
ces

2
5
8
1
C
ha
p
ter
5
G
eomicrobiology

o
f Mercury
2
6
5
1
5
.1 Introduction
2
6
5
15.2 Distribution of Mercury in Earth’s Crust

t
26
5
1
5
.3 Anthropo
g
enic Mercur
y


26
6
15.4 Mercury in Environment

t
26

6
15.5 Speci c Microbial Interactions with Mercury

2
6
7
1
5
.
5
.1 Nonenz
y
matic Meth
y
lation of Mercur
y
b
y
Microbe
s

2
6
7
1
5
.
5
.2 Enzymatic Methylation of Mercury by Microbe
s


26
8
15.5.3 Microbial Diphenylmercury Formation

2
6
9
1
5
.
5
.4 Microbial Reduction of Mercuric Ion

26
9
1
5
.
5
.
5
Formation of Meta-Cinnabar (
ß
-HgS) from Hg(II
)
b
y Cyano
b
acter

i
a

27
0
1
5
.
5
.6 Microbial Decomposition of Or
g
anomercurials

27
0
1
5
.
5
.7 Oxidation of Metallic Mercury
27
0
15.6 Genetic Control of Mercury Transformation
s

27
1
1
5
.7 Environmental Si

g
ni cance of Microbial Mercur
y
Tr
a
n
s
f
o
rm
at
i
o
n
s
2
7
2
15.8 Mercury Cycl
e

27
2
1
5
.9 Summar
y


2

7
3
Re
f
e
r
e
n
ces
.
2
7
4
1
C
ha
p
ter
6
G
eom
i
cro
bi
o
l
ogy o
f
Iron


27
9
16.1 Iron Distribution in Earth’s Crust

t
27
9
1
6
.2 Geochemicall
y
Important Properties

27
9
16.3 Biological Importance of Iron
28
0
1
6
.
3
.1 Function of Iron in
C
ell
s

28
0
16.3.2 Iron Assimilation b

y
Microbes

28
0
16.4 Iron as Energy Source for Bacteria 2
8
2
1
6
.4.1 Acidophile
s

28
2
16.4.2 Domain Bacteria: Meso
p
hile
s


28
2
16.4.2.1
A
cidithiobacillu
s
(
Formerly
Thiobacillus

)
s
f
errooxi
d
ans

28
2
16.4.2.2
T
hiobacillus prosperu
s

29
4
16.4.2.3 Leptospirillum
f
errooxidan
s
2
9
4
1
6
.4.2.4 Meta
ll
ogenium

29

5
16.4.2.
5
Ferromicrobium acidophilum

29
5
16.4.2.6 Strain CCH
7

2
9
5
CRC_7906_FM.indd xiiCRC_7906_FM.indd xii 11/11/2008 5:12:00 PM11/11/2008 5:12:00 PM
C
ontents
xiii
1
6
.4.3 Domain Bacteria: Thermophiles

29
5
16.4.3.1 Sul
f
obacillus thermosul

dooxidan
s


2
9
5
1
6
.4.
3
.2 Su
l
fo
b
aci
ll
us aci
d
op
h
i
l
u
s
.
2
9
6
1
6
.4.
3
.

3
A
cidimicrobium ferrooxidans

29
6
16.4.4 Domain Archaea: Meso
p
hiles

2
9
6
1
6
.4.4.1 Ferro
pl
asma aci
d
i
ph
i
l
um 2
9
6
1
6
.4.4.2 Ferroplasma acidarmanus


29
6
16.4.
5
Domain Archaea: Thermo
p
hiles

2
9
6
1
6
.4.
5
.1
A
ci
d
ianus
b
rier
l
e
yi
2
9
6
1
6

.4.
5
.2 Sulfolobus acidocaldarius

29
8
16.4.6 Domain Bacteria: Neutro
p
hilic Iron Oxidizers

29
8
1
6
.4.
6
.1
U
nicellular Bacteri
a
29
8
1
6
.4.7 Appenda
g
ed Bacteri
a



29
8
16.4.7.1
G
allionella
f
errugine
a

29
8
1
6
.4.7.2 Sheathed, Encapsulated, and Wall-Less Iron Bacteri
a

30
1
1
6
.
5
Anaerobic
O
xidation of Ferrous Iron

30
2
16.
5

.1
P
hototro
p
hic Oxidation

3
0
2
16.5.2 Chemotrophic Oxidatio
n

30
3
1
6
.
6
Iron(III) as Terminal Electron Acceptor in Bacterial Respiration

30
4
16.6.1 Bacterial Ferric Iron Reduction Accompan
y
in
g
Fermentation

3
0

4
1
6
.
6
.2 Ferric Iron Respiration: Early Histor
y

30
6
1
6
.
6
.3 Metabolic Evidence for Enz
y
matic Ferric Iron Reductio
n

30
8
16.6.4 Ferric Iron Res
p
iration: Current Status

3
0
9
16.6.5 Electron Transfer from Cell Surface of a Dissimilator
y

Fe(III) Re
d
ucer to Ferr
i
c Ox
id
e Sur
f
ac
e


31
3
16.6.6 Bioener
g
etics of Dissimilator
y
Iron Reduction

3
1
4
16.6.7 Ferric Iron Reduction as Electron Sink

k
31
4
1
6

.
6
.8 Reduction of Ferric Iron b
y
Fun
gi


31
5
16.6.9 T
y
pes of Ferric Compounds Attacked b
y
Dissimilator
y
I
ron
(
III
)
Re
d
uct
i
o
n

3
1

5
1
6
.7 Nonenz
y
matic Oxidation of Ferrous Iron and Reduction
of Ferric Iron b
y
Microbe
s

3
1
6
1
6
.7.1 Nonenzymatic Oxidatio
n

31
6
1
6
.7.2 Nonenz
y
matic Reduction

31
7
16.8 Microbial Preci

p
itation of Iro
n


3
1
8
1
6
.8.1 Enzymatic Processe
s

31
8
1
6
.8.2 Nonenz
y
matic Processe
s

31
9
16.8.3 Bioaccumulation of Iro
n


32
0

1
6
.9 Concept of Iron Bacteria
32
0
1
6
.10 Sedimentar
y
Iron Deposits of Putative Bio
g
enic Ori
g
in

32
2
16.11 Microbial Mobilization of Iron from Minerals in Ore, Soil
,
an
d

S
e
di
ment
s

3
2

5
1
6
.12 Microbes and Iron C
y
cle

32
6
16.13 Summar
y


32
7
R
e
f
erences
.

3
2
9
1
C
ha
p
ter
7

G
eom
i
cro
bi
o
l
ogy o
f
Manganese

34
7
17.1 Occurrence of Manganese in Earth’s Crust

t
34
7
17.2 Geochemicall
y
Important Properties of Man
g
anese

34
7
17.3 Biological Importance of Manganese
3
4
8

CRC_7906_FM.indd xiiiCRC_7906_FM.indd xiii 11/11/2008 5:12:00 PM11/11/2008 5:12:00 PM
x
i
v
C
ontent
s
17.4 Man
g
anese-Oxidizin
g
and Man
g
anese-Reducin
g
Bacteri
a
and Fun
g
i

3
4
8
17.4.1 Manganese-Ox
idi
z
i
ng Bacter
i

a an
d
Fung
i

3
4
8
17.4.2 Man
g
anese-Reducin
g
Bacteria and Fun
g
i

35
1
17.
5
Biooxidation of Man
g
anese

35
2
17.5.1 Enzymatic Manganese Oxidatio
n

35

2
17.5.2 Group I Man
g
anese Oxidizer
s

35
4
17.
5
.2.1 Sub
g
roup I
a


35
4
17.5.2.2 Subgroup Ib
35
7
17.5.2.3 Sub
g
roup I
c

35
7
17.
5

.2.4 Sub
g
roup Id

35
8
17.5.2.5 Uncertain Subgroup Af liations
35
9
17.5.3 Group II Man
g
anese Oxidizers

35
9
17.
5
.4 Group III Man
g
anese Oxidizer
s


3
6
2
17.5.5 Nonenzymatic Manganese Oxidatio
n

36

2
17.
6
Bioreduction of Man
g
anes
e


36
3
17.6.1 Or
g
anisms Capable of Reducin
g
Man
g
anese Oxides
On
l
y Anaero
bi
ca
ll
y
36
4
17.
6
.2 Reduction of Man

g
anese Oxides b
y
Or
g
anisms Capabl
e
of Reducin
g
Man
g
anese Oxides Aerobicall
y
an
d
Anaero
bi
ca
lly

36
5
17.
6
.3 Bacterial Reduction of Man
g
anese(III
)

37

0
17.6.4 Nonenz
y
matic Reduction of Man
g
anese Oxide
s

37
1
17.7 B
i
oaccumu
l
at
i
on o
f
Manganes
e

3
7
2
17.8 M
i
cro
bi
a
l

Man
g
anese Depos
i
t
i
on
i
n So
il
an
d
on Roc
ks

37
5
17.8.1 Soi
l

37
5
17.
8
.2 Roc
k
s
3
7
7

1
7.
8
.
3

O
res

3
7
8
17.9 Microbial Man
g
anese Deposition in Freshwater Environment
s

37
9
17.9.1 Bacter
i
a
l
Manganese Ox
id
at
i
on
i
n Spr

i
ngs
3
7
9
17.9.2 Bacterial Man
g
anese Oxidation in Lake
s

3
7
9
17.9.3 Bacterial Man
g
anese Oxidation in Wate
r
Di
str
ib
ut
i
on Systems
.

38
3
17.10 Microbial Man
g
anese Deposition in Marine Environments


38
4
17.10.1 Microbial Man
g
anese Oxidations in Ba
y
s, Estuaries
,
I
n
l
ets
,
t
h
e B
l
ac
k
Sea
,
etc.
.

38
5
17.10.2 Man
g
anese Ox

id
at
i
on
i
n M
i
xe
d
La
y
er o
f
Ocean

38
6
17.10.3 Manganese Oxidation on Ocean Floor

r
3
8
7
17.10.4 Manganese Ox
id
at
i
on aroun
d
Hy

d
rot
h
erma
l
Vent
s

3
9
2
17.10.5 Bacterial Man
g
anese Precipitation in Seawater Column

39
6
17.11 Microbial Mobilization of Man
g
anese in Soils and Ores

39
7
17.11.1
S
o
il
s
39
7

1
7.
11
.
2

O
res

3
9
8
17.12 Microbial Mobilization of Man
g
anese in Freshwater Environments

39
9
17.13 M
i
cro
bi
a
l
Mo
bili
zat
i
on o
f

Manganese
i
n Mar
i
ne Env
i
ronment
s

40
0
17.14 M
i
cro
bi
a
l
Man
g
anese Re
d
uct
i
on an
d
M
i
nera
li
zat

i
on
of Organic Matter

r
4
0
1
17.15 Microbial Role in Manganese Cycle in Natur
e
4
0
2
17.1
6
Summar
y


40
5
Re
f
e
r
e
n
ces

40

6
CRC_7906_FM.indd xivCRC_7906_FM.indd xiv 11/11/2008 5:12:00 PM11/11/2008 5:12:00 PM
C
ontents
xv
1
Chapter
8
G
eomicrobial Interactions with Chromium, Mol
y
bdenum, Vanadium,
U
ranium, Polonium, and Plutoniu
m

42
1
18.1 Microbial Interaction with Chromium

42
1
1
8
.1.1
O
ccurrence o
f

Ch

rom
i
um 4
2
1
18.1.2 Chemicall
y
and Biolo
g
icall
y
Important Propertie
s


42
1
18.1.3 Mobilization of Chromium with Microbiall
y
G
enerate
d
L
i
x
ivi
ant
s
42
2

18.1.4 Biooxidation of Chromium(III
)


42
2
18.1.
5
Bioreduction of Chromium(VI)

42
2
1
8
.1.
6
In Situ C
h
romate Re
d
uc
i
ng Act
i
v
i
t
y
4
2

6
18.1.7 A
pp
lied As
p
ects of Chromium(VI) Reduction

42
7
18.2 Microbial Interaction with Mol
y
bdenum

42
7
18.2.1 Occurrence an
d
Propert
i
es o
f
Mo
l
y
bd
enum 4
2
7
1
8

.2.2 Microbial
O
xidation and Reductio
n

42
7
18.3 Microbial Interaction with Vanadiu
m

42
8
1
8
.
3
.1 Bacter
i
a
l

O
x
id
at
i
on o
f
Vana
di

u
m

4
2
8
1
8
.4 M
i
cro
bi
a
l
Interact
i
on
wi
t
h

U
ran
i
um

42
9
18.4.1 Occurrence and Pro
p

erties of Uranium

42
9
18.4.2 M
i
cro
bi
a
l
Ox
id
at
i
on o
f
U
(
IV
)

4
2
9
18.4.3 M
i
cro
bi
a
l

Re
d
uct
i
on o
f
U(IV
)


43
0
18.4.4 Bioremediation of Uranium Pollution

4
3
1
1
8
.
5
Bacterial Interaction
w
ith Polonium 4
3
2
1
8
.
6

Bacterial Interaction
w
ith Plutonium

43
2
18.7 Summar
y


4
3
2
R
e
f
erences
.
4
3
3
1
Chapter
9
Geomicrobiology of Sulfur

r
4
3
9

19.1 Occurrence of Sulfur in Earth’s Crust

t
4
3
9
19.2 Geochemically Important Properties of Sulfur

r
4
3
9
19.3 Biological Importance of Sulfur

r
44
0
19.4 Mineralization of Or
g
anic Sulfur Compounds

44
0
1
9
.5 Sulfur Assimilation 4
4
1
19.
6

Geomicrobiall
y
Important T
y
pes of Bacteria That React with Sulfur
and Sulfur Com
p
ound
s

44
2
19.6.1 Oxidizers of Reduced Sulfur

r
4
4
2
19.6.2 Reducers of Oxidized Forms of Sulfur

r
44
6
19.6.2.1 Sulfate Reductio
n

44
6
1
9

.
6
.2.2 Sul te Reduction 44
8
19.6.2.3 Reduction of Elemental Sulfur

r
44
8
19.7 Ph
y
siolo
gy
and Biochemistr
y
of Microbial Oxidation of Reduce
d
Forms of Sulfur

r
44
9
1
9
.7.1 Su
l

d
e


44
9
19.7.1.1 Aerobic Attack

k
44
9
19.7.1.2 Anaerobic Attack

k
45
0
19.7.1.3 Ox
id
at
i
on o
f
Su
l

d
e
by
Heterotrop
h
s an
d
M
i

xotrop
hs

4
5
1
19.7.2 Elemental Su lfu r

r
4
5
1
19.7.2.1 Aerobic Attack

k
4
5
1
19.7.2.2 Anaerobic Oxidation of Elemental Sulfur

r
4
5
1
19.7.2.3 Dis
p
ro
p
ortionation of Sulfu
r


4
5
1
CRC_7906_FM.indd xvCRC_7906_FM.indd xv 11/11/2008 5:12:00 PM11/11/2008 5:12:00 PM
xv
i

C
ontent
s
1
9
.7.3 Su l te Oxidatio
n


4
5
2
19.7.3.1 Oxidation b
y
Aerobe
s

4
5
2
19.7.3.2 Ox
id

at
i
on
b
y Anaero
b
e
s

45
3
1
9
.7.4 Thiosulfate Oxidatio
n

45
3
19.7.4.1 Dis
p
ro
p
ortionation of Thiosulfat
e

4
5
5
19.7.5 Tetrathionate Oxidatio
n


45
6
19.7.
6
Common Mechanism for Oxidizin
g
Reduced Inor
g
ani
c
Sulfur Com
p
ounds in Domain Bacteri
a


45
6
19.8 Autotrophic and Mixotrophic Growth on Reduced Forms of Sulfur

r
45
6
19.8.1 Ener
gy
Couplin
g
in Bacterial Sulfur Oxidation


45
6
19.8.2 Reduced Forms of Sulfur as Sources of Reducin
g
Power

f
or
CO
2
F
i
xat
i
on
b
y Autotrop
hs

45
7
19.8.2.1 Chemos
y
nthetic Autotrophs

45
7
19.8.2.2 Photos
y
nthetic Autotroph

s

45
7
19.8.3 C
O
2
F
i
xat
i
on
b
y Autotrop
h
s
45
7
19.8.3.1
C
hemos
y
nthetic Autotrophs

45
7
19
.
8
.

3
.
2
P
hotos
y
nthetic Autotroph
s

4
5
8
19.8.
4
Mixotroph
y


4
5
8
19
.
8
.
4
.
1
Free-L
i

v
i
n
g
Bacter
i
a

4
5
8
19.8.
5
Unusual Consorti
a


4
5
8
19.9 Anaero
bi
c Resp
i
rat
i
on Us
i
ng Ox
idi

ze
d
Forms o
f
Su
lf
ur as Term
i
na
l
E
l
ectron Acceptor
s


4
5
9
19.9.1
Reduction of Fully or Partially Oxidized Sulfur

r
4
5
9
1
9
.
9

.2
Bi
oc
h
em
i
stry o
f
D
i
ss
i
m
il
atory Su
lf
ate Re
d
uct
i
o
n
4
5
9
19
.
9
.
3

S
u
lf
ur Isotope Fract
i
onat
i
on

4
6
1
19.9.4
Reduction of Elemental Sulfur

r
4
6
2
1
9
.
9
.5
R
e
d
uct
i
on o

f
T
hi
osu
lf
at
e

46
3
1
9
.
9
.
6

T
erminal Electron Acceptors Other Than Sulfate, Sul te,
TT
Thiosulfate, or Sulfur

r
4
6
3
1
9
.
9

.7
O
xygen To
l
erance o
f
Su
lf
ate-Re
d
ucers 4
6
4
19.10 Autotrop
hy
, M
i
xotrop
hy
, an
d
Heterotrop
hy
amon
g
Su
lf
ate-Re
d
uc

i
n
g
B
acte
ri
a


4
6
4
1
9
.10.1
A
utotrop
h
y 4
6
4
19
.
10
.
2
M
i
xotrop
hy



46
5
19.10.
3
H
eterotroph
y


4
6
5
19.11 Biodeposition of Native Sulfur

r
46
6
19
.
11
.
1
Ty
pes o
f
Depos
i
t

s


46
6
19.11.
2
Examples of S
y
n
g
enetic Sulfur Deposition

46
6
19
.
11
.
2
.
1
Cy
renaican Lakes, Lib
y
a, North Afric
a


46

6
1
9
.11.2.2 La
k
e Senoye
46
9
19.11.2.3 Lake E
y
re

4
6
9
19
.
11
.
2
.
4
S
o
l
ar La
k
e

47

0
19.11.2.5
Th
erma
l
La
k
es an
d
Spr
i
ngs
47
0
19
.
11
.
3
Examples of Epi
g
enetic Sulfur Deposit
s

47
2
1
9
.11.3.
1

S
i
c
ili
an Su
lf
ur Depos
i
t
s

47
2
19.11.3.
2
Salt Dome
s

47
2
19
.
11
.
3
.
3
Gaurdak Sulfur Deposit

t

4
7
4
19.11.3.
4
Shor-Su Sulfur Deposit

t
4
7
4
19.11.3.
5
Kara Kum Sulfur Deposit

t
47
5
CRC_7906_FM.indd xviCRC_7906_FM.indd xvi 11/11/2008 5:12:00 PM11/11/2008 5:12:00 PM
C
ontents
x
v
ii
19.12 Microbial Role in Sulfur C
y
cle

47
5

19.13 Summar
y


4
7
6
R
e
f
erences
.
4
7
7
2
C
ha
p
ter
0
Bi
ogenes
i
s an
d
B
i
o
d

egra
d
at
i
on o
f
Su
l

d
e M
i
nera
l
s at Eart
h
’s Sur
f
ace 4
9
1
2
0
.1 Intro
d
uct
i
on 4
9
1

20.2 Natural Ori
g
in of Metal Sul des

49
1
20.2.1
Hy
drothermal Ori
g
in (Abiotic
)

4
9
1
2
0
.2.2
S
e
di
mentary Meta
l
Su
l

d
es o
f

B
i
ogen
i
c Or
i
g
in

4
9
3
20.3 Principles of Metal Sul de Formation

49
4
20.4 Laborator
y
Evidence in Support of Bio
g
enesis of Metal Sul des

4
9
5
2
0
.4.1
B
atc

h

C
u
l
ture
s

4
9
5
20
.
4
.
2
Column Experiment: Model for Bio
g
enesis of Sedimentar
y

Metal Sul de
s

4
9
7
2
0
.

5
Biooxidation of Metal
S
ul de
s
49
8
2
0
.
5
.
1
O
r
g
an
i
sms Invo
l
ve
d

i
n B
i
oox
id
at
i

on o
f
Meta
l
Su
l

d
es

49
8
20.
5
.
2
D
irect Oxidation

49
9
2
0
.
5
.
3
I
n
di

rect
O
x
id
at
i
o
n

50
3
2
0
.
5
.
4
Py
r
i
te Ox
id
at
i
on

50
4
20.6 Bioleachin
g

of Metal Sul de and Uraninite Ores

50
7
2
0
.
6
.
1
Meta
l

S
u
l

d
e
O
re
s

50
7
2
0
.
6
.

2
Uran
i
n
i
te Leac
hi
n
g


51
1
20.6.
3
Mobilization of Uranium in Granitic Rocks b
y
Heterotrophs

5
1
2
2
0
.
6
.
4
S
tu

d
y o
f
B
i
o
l
eac
hi
ng K
i
net
i
cs
5
1
3
2
0
.
6
.
5
I
n
d
ustr
i
a
l

versus Natura
l
B
i
o
l
eac
hi
n
g

5
1
3
20.7 Bioextraction of Metal Sul de Ores b
y
Complexation

5
1
3
20.8 Format
i
on o
f
Ac
id
Coa
l
M

i
ne Dra
i
nag
e

51
4
20
.
8
.
1
New Discoveries Relatin
g
to Acid Mine Draina
g
e

5
1
5
20.9 Summar
y

51
7
R
e
f

erences
.

51
8
2
C
ha
p
ter
1
G
eom
i
cro
bi
o
l
ogy o
f
Se
l
en
i
um an
d
Te
ll
ur
i

u
m

52
7
21.1 Occurrence in Earth’s Crust

t
52
7
21.2 Biolo
g
ical Importance

52
7
21.3 Toxicit
y
of Selenium and Telluriu
m

5
2
8
21.4 B
i
oox
id
at
i

on o
f
Re
d
uce
d
Forms o
f

S
e
l
en
i
um
.

5
2
8
21.5 Bioreduction of Oxidized Selenium Compounds

5
2
8
21.
5
.1
O
ther Products of Selenate and Selenite Reductio

n

53
0
21.
5
.2
Selenium Reduction in the Environment

t
53
1
21.
6
Selenium C
y
cl
e


53
2
21
.
7 Biooxidation of Reduced Forms of Tellurium

5
3
2
21.

8
B
i
ore
d
uct
i
on o
f

O
x
idi
ze
d
Forms o
f
Te
ll
ur
i
u
m

53
3
21
.
9


S
ummar
y


53
3
Re
f
e
r
e
n
ces

5
3
4
2
Chapter
2
G
eom
i
cro
bi
o
l
o
gy

o
f
Foss
il
Fue
l
s

53
7
22
.
1 Intro
d
uct
i
o
n


53
7
22
.
2
N
atural Abundance of Fossil Fuels

5
3

7
CRC_7906_FM.indd xviiCRC_7906_FM.indd xvii 11/11/2008 5:12:01 PM11/11/2008 5:12:01 PM
xv
iii

C
ontent
s
22.
3
Methane

53
7
22.3.1 Methano
g
ens

53
9
22.
3
.2 Met
h
anogenes
i
s an
d
Car
b

on Ass
i
m
il
at
i
on
b
y Met
h
anogens
54
1
22.3.2.1
M
ethano
g
enesis

54
1
22.
3
.
3
Bi
oenerget
i
cs o
f

Met
h
anogenes
is

54
4
22
.
3
.
4
Carbon Fixation b
y
Methano
g
en
s

54
4
22.3.
5
Microbial Methane Oxidation

54
5
22.
3
.

5
.
1
Aerobic Methanotroph
y


54
5
22.
3
.
5
.
2
Anaero
bi
c Met
h
anotrop
hy

54
7
22.
3
.
6
Bi
oc

h
em
i
str
y
o
f
Met
h
ane Ox
id
at
i
on
i
n Aero
bi
c Met
h
anotrop
hs

5
4
8
22.3.7 Carbon Assimilation b
y
Aerobic Methanotroph
s



54
9
22.
3
.
8
P
os
i
t
i
on o
f
Met
h
ane
i
n Car
b
on Cyc
le

55
0
22.4
Peat

55
0

22
.
4
.1
Nature of Peat

t
55
0
22.4.2
R
o
l
es o
f
M
i
cro
b
es
i
n Peat Format
i
o
n

55
2
22.
5


C
oal

55
2
22.
5
.1 Nature of Coal

55
2
22.
5
.2
R
o
l
e o
f
M
i
cro
b
es
i
n
C
oa
l

Format
i
on
55
3
22.
5
.
3
C
oa
l
as M
i
cro
bi
a
l

S
u
b
strate

55
4
22.
5
.4 Microbial Desulfurization of Coal


55
5
22.
6
Petroleum
55
6
22.
6
.1
N
ature o
f
Petro
l
eum

55
6
22.6.2
Ro
l
e

o
f Mi
c
r
obes
in P

et
r
o
l
eu
m F
o
rm
at
i
o
n

55
6
22.
6
.
3
Role of Microbes in Petroleum Migration in Reservoir Rock

k
55
7
22.
6
.4 M
i
cro
b

es
i
n Secon
d
ar
y
an
d
Tert
i
ar
y
O
il
Recover
y

55
8
22.6.
5
R
emoval of Or
g
anic Sulfur from Petroleu
m

55
9
22.

6
.
6
M
i
cro
b
es
i
n Petro
l
eum Degra
d
at
i
o
n

55
9
22.
6
.7 Current State o
f
Know
l
e
dg
e o
f

Aero
bi
c an
d
An
ae
r
obic
P
etroleum De
g
radation b
y
Microbes

56
0
22.
6
.
8
Use o
f
M
i
cro
b
es
i
n Prospect

i
ng
f
or Petro
l
eum
56
3
22.
6
.
9
M
i
cro
b
es an
d

Sh
a
l
e
Oil


56
3
22
.

7
S
ummar
y


56
4
R
e
f
erences
.

56
5
G
lossar
y

5
77
In
dex

5
8
9
CRC_7906_FM.indd xviiiCRC_7906_FM.indd xviii 11/11/2008 5:12:01 PM11/11/2008 5:12:01 PM
xix

Pr
e
fa
ce
S
evera
l

i
mportant a
d
vances
h
ave occurre
d

i
n t
h
e

e
ld
o
f
geom
i
cro
bi
o

l
ogy s
i
nce t
h
e
l
ast e
di
t
i
on
o
f
t
hi
s
b
oo
k
,
i
nc
l
u
di
ng a num
b
er o
f

o
b
servat
i
ons ma
d
e poss
ibl
e
b
y t
h
e
i
ntro
d
uct
i
on o
f
genet
i
c
and molecular biolo
g
ical techniques that make revision and updatin
g
of the previous edition of
G
eomicro

b
io
l
o
gy
t
i
me
l
y
.
Henry Lutz E
h
r
li
c
h
, aut
h
or o
f
t
h
e ear
li
er
f
our e
di
t

i
ons,
h
as
b
een
j
o
i
ne
d

b
y D
i
anne K. Newman
f
o
r

this  fth edition to lend her expertise in the area of molecular
g
eomicrobiolo
gy
. This has resulted in a
n
ew c
h
apter (C
h

apter 8)
i
n t
hi
s e
di
t
i
on, w
hi
c
h

i
s ent
i
t
l
e
d
“Mo
l
ecu
l
ar Met
h
o
d
s
i

n Geom
i
cro
bi
o
l
ogy.”
Th
e tec
h
n
i
ques
d
escr
ib
e
d

i
n t
hi
s c
h
apter
ill
um
i
nate t
h

e processes
b
y w
hi
c
h

b
acter
i
a cata
l
yze
i
mpor-
tant
g
eomicrobial reactions. For example, we are be
g
innin
g
to understand the molecular details
w
h
ere
b
y some gram-negat
i
ve
b

acter
i
a export e
l
ectrons to m
i
nera
l
ox
id
es w
i
t
h
w
hi
c
h
t
h
ey are
i
n
ph
ys
i
ca
l
contact
i

n t
h
e
i
r resp
i
ratory meta
b
o
li
sm. Suc
h
e
l
ectron trans
f
er
i
s ena
bl
e
d

b
y resp
i
ratory
e
nz
y

mes in the outer membrane and periplasm of such or
g
anisms. Molecular techniques have also
d
emonstrate
d
t
h
at at
l
east one gram-negat
i
ve
b
acter
i
um can
i
mport e
l
ectrons
d
onate
d

b
y an e
l
ec-
tron

d
onor,
f
errous
i
ron,
i
n contact w
i
t
h
t
h
e outer sur
f
ace o
f
t
h
e outer mem
b
rane o
f
t
hi
s or
g
an
i
sm.

In some cases, electron shuttles have been shown to facilitate electron transfer. Further im
p
ortan
t

a
d
vances
i
n t
hi
s area are ant
i
c
i
pate
d
. Co
ll
ect
i
ve
l
y, t
h
ese mec
h
an
i
st

i
c o
b
servat
i
ons ma
k
e c
l
ear t
h
a
t

mi
cro
b
es p
l
a
y
a muc
h
more
di
rect ro
l
e
i
n t

h
e trans
f
ormat
i
on o
f
ox
idi
za
bl
e an
d
re
d
uc
ibl
e m
i
nera
l
s
than had been previousl
y
believed b
y
man
y
researchers in this  eld. We anticipate that as mechanis-
t

i
c mo
l
ecu
l
ar approac
h
es are
i
ncreas
i
ng
l
y app
li
e
d
to
di
verse pro
bl
ems
i
n geom
i
cro
bi
o
l
ogy, exc

i
t
i
ng
di
scover
i
es w
ill

b
e ma
d
e a
b
out
h
ow
lif
e susta
i
ns
i
tse
lf
even
i
n seem
i
n

gly

i
n
h
osp
i
ta
bl
e env
i
ronments
s
uch as the dee
p
subsurface
.
Just as
i
n t
h
e case o
f
t
h
e prev
i
ous e
di
t

i
ons o
f
Geomicro
b
io
l
o
gy
,
t
h
e c
hi
e
f
a
i
m o
f
t
h
e


f
t
h
e
di

t
i
on
i
s to serve as an
i
ntro
d
uct
i
on to t
h
e su
bj
ect an
d
an up-to-
d
ate re
f
erence. To cont
i
nue to prov
id
e a
broad
p
ers
p
ective of the develo

p
ment of the  eld, discussion of the older literature that a
pp
eared
i
n ear
li
er e
di
t
i
ons o
f
t
hi
s
b
oo
k

h
as
b
een reta
i
ne
d
. C
h
anges

i
n un
d
erstan
di
ng an
d
v
i
ewpo
i
nts are
p
o
i
nte
d
out w
h
ere necessar
y
. A
l
t
h
ou
gh
we
d
o not c

l
a
i
m t
h
at t
h
e re
f
erence c
i
tat
i
ons at t
h
e en
d
o
f

e
ach chapter are exhaustive, cross-referencin
g
should reveal other pertinent literature. As before, a
g
l
ossary o
f
terms t
h

at may
b
e un
f
am
ili
ar to some rea
d
ers
h
as
b
een a
dd
e
d
. A
ll
c
h
apters
h
ave
b
een
up
d
ate
d
w

h
ere necessar
y

by

i
ntro
d
uc
i
n
g
t
h
e

n
di
n
g
s o
f
recent researc
h.
W
e are continuin
g
to retain some of the drawin
g

s prepared b
y
Stephen Chian
g
for the  rs
t

edi
t
i
on. Ot
h
er
ill
ustrat
i
ons
f
rom t
h
e
f
ourt
h
e
di
t
i
on
h

ave
b
een reta
i
ne
d

i
n t
h
e current e
di
t
i
on
,
w
i
t
h
appropr
i
ate ac
k
now
l
e
dg
ments to t
h

e
i
r source w
h
en not or
igi
nat
i
n
g

f
rom us, an
d
some new
ill
ustra-
tions have been added. We are ver
y

g
rateful to Andreas Kappler for allowin
g
us to use the photomi-
c
rograp
h
o
f
C

hl
oro
b
ium
f
errooxi
d
an
s
f
or t
h
e
b
oo
k
co
v
er
ill
ustrat
i
on o
f
t
hi
s e
di
t
i

on
.
W
e owe spec
i
a
l
t
h
an
k
s to Mart
i
n Po
l
z, V
i
ctor
i
a Orp
h
an, an
d
A
l
ex Sess
i
ons
f
or st

i
mu
l
at
i
n
g

di
s-
c
ussions that shaped the content of Chapter 8; and we
g
ratefull
y
acknowled
g
e Alexandre Poulain
f
or
hi
s
h
e
l
p
i
n prepar
i
ng t

h
e

gures
f
or t
hi
s c
h
apter. We a
l
so owe s
i
ncere t
h
an
k
s to Jon Pr
i
ce
f
or
hi
s
ass
i
stance
i
n o
b

ta
i
n
i
n
g
t
h
e p
h
oto
g
rap
h
o
f
t
h
e samp
l
e o
f

b
asa
l
t
f
rom t
h

e roc
k
co
ll
ect
i
on at Rensse
l
ae
r

P
ol
y
technic Institute.
W
e apprec
i
ate t
h
e encouragement an
d
e
di
tor
i
a
l
ass
i

stance o
f
Ju
di
t
h
Sp
i
ege
l
, Bar
b
ara Norw
i
tz,
an
d
Patr
i
c
i
a Ro
b
erson o
f
Ta
yl
or & Franc
i
s Group LLC.

Responsibilit
y
for the presentation and interpretation of the sub
j
ect matter in this edition rests
e
nt
i
re
l
y w
i
t
h
t
h
e aut
h
ors
.
H
enry Lutz Ehrlich
Di
anne K.
N
ewma
n
CRC_7906_FM.indd xixCRC_7906_FM.indd xix 11/11/2008 5:12:01 PM11/11/2008 5:12:01 PM
CRC_7906_FM.indd xxCRC_7906_FM.indd xx 11/11/2008 5:12:01 PM11/11/2008 5:12:01 PM
xxi

Aut
h
or
s
D
r. Henr
y
Lutz Ehrl
i
ch earne
d
a BS
d
egree
f
rom Harvar
d
Co
ll
ege (ma
j
or:
bi
oc
h
em
i
ca
l
sc

i
ences)
i
n 1948, an MS degree in 1949 (major: agricultural bacteriology), and a PhD degree in 1951 (major:
a
g
ricultural bacteriolo
gy
; minor: biochemistr
y
); both of the latter de
g
rees from the Universit
y
of
Wi
scons
i
n, Ma
di
son. He
j
o
i
ne
d
t
h
e
f

acu
l
ty o
f
t
h
e B
i
o
l
ogy Department o
f
Rensse
l
aer Po
l
ytec
h
n
i
c
Institute as an assistant professor in the fall of 1951, attaining the rank of full professor in 1964.
D
r. Ehrlich became
p
rofessor emeritus in 1994 but continues to be active in the de
p
artment in
p
ursuit of

s
ome scholarly work. He began teaching a course in geomicrobiology in the spring semester of 1966.
Dr. E
h
r
li
c
h

i
s a
f
e
ll
ow o
f
t
h
e Amer
i
can Aca
d
emy o
f
M
i
cro
bi
o
l

ogy, Amer
i
can Assoc
i
at
i
on
f
or t
h
e
A
dvancement of Science, the International Union of Pure and Applied Chemistr
y
, and the Inter-
n
at
i
ona
l
Sympos
i
a on Env
i
ronmenta
l
B
i
ogeoc
h

em
i
stry. He
i
s a mem
b
er o
f
t
h
e Inter
di
sc
i
p
li
nary
Comm
i
ttee o
f
t
h
e Wor
ld
Cu
l
tura
l
Counc

il
(Conse
j
o Cu
l
tura
l
Mun
di
a
l
) an
d
an
h
onoree o
f
t
h
e 11t
h

International S
y
mposium on Water/Rock held in 1994 in Sarato
g
a Sprin
g
s, New York. Dr. Ehrlich
h

as
b
een a consu
l
tant at var
i
ous t
i
mes
f
or a num
b
er o
f

diff
erent compan
i
es. He was e
di
tor-
i
n-c
hi
e
f
o
f

Geomicrobiology Journal

(1983–1995) and has since continued as co-editor-in-chief. He is a mem-
l
be
r
o
f
t
h
e

ed
i
to
ri
a
l
boa
r
ds

of

A
pplied and Environmental Microbiology
a
n
d
Applied Microbiology
a
n

d
Biotec
h
no
l
o
gy
.
He
i
s a
l
so emer
i
tus mem
b
er o
f
Amer
i
can Assoc
i
at
i
on
f
or t
h
e A
dv

ancement o
f

S
c
i
ence, Amer
i
can Inst
i
tute o
f
B
i
o
l
o
gi
ca
l
Sc
i
ences, Amer
i
can Soc
i
et
y

f

or M
i
cro
bi
o
l
o
gy
, an
d
t
h
e
S
ociet
y
of Industrial Microbiolo
gy
.
Dr. E
h
r
li
c
h
’s researc
h

i
nterests

h
ave res
id
e
d

i
n
b
acter
i
a
l
ox
id
at
i
on o
f
Mn
(
II
)
an
d
re
d
uct
i
on o

f

Mn(IV) assoc
i
ate
d
w
i
t
h
mar
i
ne
f
erroman
g
anese concret
i
ons, mar
i
ne
hyd
rot
h
erma
l
vent commun
i
t
i

es,
and some freshwater environments; bacterial oxidation of arsenic(III); bacterial reduction of Cr(VI);
b
acter
i
a
l

i
nteract
i
on w
i
t
h

b
aux
i
te; an
d

bi
o
l
eac
hi
ng o
f
ores

i
nc
l
u
di
ng meta
l
su
l

d
es,
b
aux
i
te, an
d
ot
h
ers.
He
i
s aut
h
or or coaut
h
or o
f
more t
h

an 100 art
i
c
l
es
d
ea
li
n
g
w
i
t
h
var
i
ous top
i
cs
i
n
g
eom
i
cro
bi
o
l
o
gy

.
D
r. Dianne K. Newman earne
d
a BA
d
e
g
ree
f
rom Stan
f
or
d
Un
i
vers
i
t
y
(ma
j
or: German stu
di
es)
i
n 1993, and a PhD de
g
ree in 1997 (ma
j

or: environmental en
g
ineerin
g
with an emphasis on micro-
bi
o
l
ogy)
f
rom t
h
e Massac
h
usetts Inst
i
tute o
f
Tec
h
no
l
ogy (MIT). S
h
e spent two years as an exc
h
ange
s
cholar at Princeton Universit
y

in the Geosciences department from 1995 to 1997. Dr. Newman was
a postdoctoral fellow in the Department of Microbiolo
gy
and Molecular Genetics at Harvard Medical
S
c
h
oo
l

f
rom 1998 to 2000. S
h
e
j
o
i
ne
d
t
h
e
f
acu
l
ty o
f
t
h
e Ca

lif
orn
i
a Inst
i
tute o
f
Tec
h
no
l
ogy
i
n 2000,
w
h
ere s
h
e was
j
o
i
nt
ly
appo
i
nte
d

i

n t
h
e
di
v
i
s
i
ons o
f
Geo
l
o
gi
ca
l
an
d
P
l
anetar
y
Sc
i
ences an
d
B
i
o
l

o
gy
. In
2007, she returned to MIT, where she is currentl
y
the John and Doroth
y
Wilson Professor of Biolo
gy

an
d
Geo
bi
o
l
ogy, w
i
t
h
a
j
o
i
nt appo
i
ntment
i
n t
h

e
d
epartments o
f
B
i
o
l
ogy an
d
Eart
h
, Atmosp
h
er
i
c an
d

Pl
anetary Sc
i
ences. Dr. Newman
i
s a
l
so an Invest
i
gator o
f

t
h
e Howar
d
Hug
h
es Me
di
ca
l
Inst
i
tute
.
Dr. Newman’s honors include bein
g
a Clare Boothe Luce assistant professor, an Of ce of Naval
R
esearc
h
young
i
nvest
i
gator, a Dav
id
an
d
Luc
ill

e Pac
k
ar
d
Fe
ll
ow
i
n sc
i
ence an
d
eng
i
neer
i
ng, an
Invest
ig
ator o
f
t
h
e Howar
d
Hu
gh
es Me
di
ca

l
Inst
i
tute, an
d
a
f
e
ll
ow o
f
t
h
e Amer
i
can Aca
d
em
y
o
f

Microbiolo
gy
. She was the 2008 recipient of the Eli Lil
y
and Compan
y
Research Award from the
A

mer
i
can Soc
i
ety
f
or M
i
cro
bi
o
l
ogy. S
h
e
i
s an e
di
tor o
f
t
h
e Geo
b
io
l
o
gy
Journa
l

,
an
d

i
s on t
h
e e
di
to-
ri
a
l

b
oar
d
o
f
t
h
e
A
nnua
l
Review of Eart
h
an
d
P

l
anetary Scienc
e
. S
h
e
i
s on t
h
e sc
i
ent
i
c a
d
v
i
sor
y

board of Mascoma Corporation, and is a member of the American Societ
y
of Microbiolo
gy
and the
A
mer
i
can Geop
h

ys
i
ca
l
Un
i
on
.
Dr. Newman’s
l
a
b
orator
y
see
k
s to
g
a
i
n
i
ns
igh
ts
i
nto t
h
e evo
l

ut
i
on o
f
meta
b
o
li
sm as recor
d
e
d

i
n ancient rocks b
y
stud
y
in
g
how modern bacteria catal
y
ze
g
eochemicall
y
si
g
ni cant reactions.
S

pec
i
ca
ll
y, s
h
e
f
ocuses on putat
i
ve
l
y anc
i
ent
f
orms o
f
p
h
otosynt
h
es
i
s an
d
resp
i
rat
i

on, w
i
t
h
a spe-
ci
c
i
nterest
i
n t
h
e ce
ll
u
l
ar mec
h
an
i
sms t
h
at ena
bl
e t
h
ese comp
l
ex processes to wor
k

.
CRC_7906_FM.indd xxiCRC_7906_FM.indd xxi 11/11/2008 5:12:01 PM11/11/2008 5:12:01 PM
CRC_7906_FM.indd xxiiCRC_7906_FM.indd xxii 11/11/2008 5:12:01 PM11/11/2008 5:12:01 PM
1
1
I
ntr
od
ucti
on
G
eom
i
cro
bi
o
l
ogy
d
ea
l
s w
i
t
h
t
h
e ro
l
e t

h
at m
i
cro
b
es p
l
ay at present on Eart
h

i
n a num
b
er o
f

f
un
d
a-
m
ental
g
eolo
g
ic processes and have pla
y
ed in the past since the be
g
innin

g
of life. These processes
i
nclude the cycling of organic and some forms of inorganic matter at the surface and in the sub-
s
ur
f
ace o
f
Eart
h
, t
h
e weat
h
er
i
ng o
f
roc
k
s, so
il
an
d
se
di
ment
f
ormat

i
on an
d
trans
f
ormat
i
on, an
d
t
h
e
g
enesis and de
g
radation of various minerals and fossil fuels.
G
eomicrobiology should not be equated with microbial ecology or microbial biogeochemistry.
Micro
b
ia
l
eco
l
og
y

i
s t
h

e stu
d
y o
f

i
nterre
l
at
i
ons
hi
ps
b
etween
diff
erent m
i
croorgan
i
sms; among m
i
cro-
or
g
anisms, plants, and animals; and between microor
g
anisms and their environment.
Mic
r

obial

bio-
g
eochemistr
y
is the study of microbially in uenced geochemical reactions, enzymatically catalyzed
or not, an
d
t
h
e
i
r
ki
net
i
cs. T
h
ese react
i
ons are o
f
ten stu
di
e
d

i
n t

h
e context o
f
cyc
li
ng o
f

i
norgan
i
c an
d

or
g
anic matter with an emphasis on environmental mass transfer and ener
gy
 ow. These sub
j
ects
overlap to some degree, as shown in Figure 1.1.
It
i
s unc
l
ear as to
wh
en t
h

e term geomicro
b
io
l
ogy
w
as

rst
i
ntro
d
uce
d

i
nto t
h
e sc
i
ent
i
c
v
oca
b
u-
lar
y
. This term is obviousl

y
derived from the term
g
eological microbiology. Beerstecher (19
5
4)
de ned geomicrobiology as “the study of the relationship between the history of the Earth and
m
icrobial life upon it.” Kuznetsov et al. (19
6
3) de ned it as “the study of microbial processes cur-
r
entl
y
takin
g
place in the modern sediments of various bodies of water, in
g
round waters circulatin
g

through sedimentary and igneous rocks, and in weathered Earth crust [and also] the physiology
o
f
spec
i
c m
i
croorgan
i

sms ta
ki
ng part
i
n present
l
y occurr
i
ng geoc
h
em
i
ca
l
processes.” Ne
i
t
h
e
r

author traced the histor
y
of the term, but the
y
pointed to the important roles that scientists such a
s
S
. Winogradsky, S. A. Waksman, and C. E. ZoBell played in the development of the  eld.
G

eom
i
cro
bi
o
l
ogy
i
s not a new sc
i
ent
i
c
di
sc
i
p
li
ne, a
l
t
h
oug
h
unt
il
t
h
e 1980s
i

t
did
not rece
i
ve
m
uch specialized attention. A uni ed concept of
g
eomicrobiolo
gy
and the biosphere can be said
to have been pioneered in Russia under the leadership of V. I. Vernadsky (1863–194
5
) (see Ivanov,
19
6
7; Lapo, 1987; Bailes, 1990; Vernadsky, 1998, for insights and discussions of early Russian
g
eomicrobiolo
gy
and its practitioners)
.
Certain early investigators in soil and aquatic microbiology may not have thought of themselves
as geom
i
cro
bi
o
l
og

i
sts,
b
ut t
h
ey nevert
h
e
l
ess exerte
d
an
i
mportant
i
n

uence on t
h
e su
bj
ect. One o
f
t
h
e
 rst contributors to
g
eomicrobiolo
gy

was Ehrenber
g
(1836, 1838), who discovered the association
o
f Gallionella
f
erruginea with ochreous deposits of bog iron in the second quarter of the nineteenth
c
entury. He
b
e
li
eve
d
t
h
at t
hi
s organ
i
sm, w
hi
c
h

h
e c
l
ass
i

e
d
as an
i
n
f
usor
i
an (protozoan),
b
ut w
hi
c
h

we now reco
g
nize as a stalked bacterium (see Chapter 16), pla
y
ed a role in the formation of such
deposits. Another important early contributor to geomicrobiology was S. Winogradsky, who discov-
e
re
d
t
h
at Beggiato
a
,
a



l
amentous
b
acter
i
um (see C
h
apter 19), cou
ld
ox
idi
ze
H
2
S
to e
l
ementa
l
su
lf
u
r

(Wino
g
radsk
y

, 1887) and tha
t
Leptothrix ochrace
a
,
a sheathed bacterium (see Cha
p
ter 1
6
),
p
romoted
oxidation of FeCO
3
to ferric oxide (Winogradsky, 1888). He believed that each of these organisms
ga
i
ne
d
energy
f
rom t
h
e correspon
di
ng processes. St
ill
ot
h
er

i
mportant ear
l
y contr
ib
utors to geom
i
cro-
biolo
gy
were Harder (1919), a researcher trained as a
g
eolo
g
ist and microbiolo
g
ist, who studied the
s
igni cance of microbial iron oxidation and precipitation in relation to the formation of sedimentary
i
ron
d
epos
i
ts, an
d
Stutzer (1912) an
d
ot
h

ers, w
h
ose stu
di
es
l
e
d
to t
h
e recogn
i
t
i
on o
f
t
h
e s
i
gn
i
cance
o
f mi
c
r
ob
i
a

l
o
xi
dat
i
o
n
o
f H
2
S
to elemental sulfur in the formation of sedimentar
y
sulfur deposits. Ou
r

e
arly understanding of the role of bacteria in sulfur deposition in nature received a further boost from
the discovery of bacterial sulfate reduction by Beijerinck (1895) and van Delden (1903)
.
CRC_7906_Ch001.indd 1CRC_7906_Ch001.indd 1 11/5/2008 5:11:45 PM11/5/2008 5:11:45 PM
2
Geomicro
b
io
l
og
y
Startin
g

with the Russian investi
g
ator Nadson (1903, 1928) at the end of the nineteenth centur
y
,
and continuing with such investigators as Bavendamm (1932), the important role of microbes in
s
ome
f
orms o
f

C
a
CO
3
prec
i
p
i
tat
i
on
b
egan to
b
e note
d
. M
i

cro
bi
a
l
part
i
c
i
pat
i
on
i
n manganese ox
id
a-
tion and precipitation in nature was  rst reco
g
nized b
y
Bei
j
erinck (1913), Soehn
g
en (1914), Lieske
(1919), and Thiel (192
5
). Zappfe (1931) later related this activity to the formation of sedimentary
m
anganese ore (see C
h

apter 17). A m
i
cro
bi
a
l
ro
l
e
i
n met
h
ane
f
ormat
i
on (met
h
anogenes
i
s)
b
ecame
apparent throu
g
h the observations and studies of Béchamp (1868), Tappeiner (1882), Popoff (187
5
),
Hoppe-Seyler (1886), Omeliansky (1906), Soehngen (1906), and Barker (19
5

6). The role of bacte-
r
ia in rock weathering was  rst suggested by Muentz (1890) and Merrill (1895). Later, the involve-
m
ent of acid-producin
g
microor
g
anisms, such as nitri ers, and crustose lichens and fun
g
i in such
weathering was suggested (see Waksman, 1932). Thus by the beginning of the twentieth century,
m
any
i
mportant areas o
f
stu
d
y o
f
geom
i
cro
bi
a
l
processes
h
a

d

b
egun to rece
i
ve ser
i
ous attent
i
on
from microbiolo
g
ists. In
g
eneral it ma
y
be said that most of the earl
y

g
eomicrobiall
y
importan
t

discoveries were made through physiological studies in the laboratory, which revealed the capacity
o
f
spec
i

c organ
i
sms to promote geom
i
cro
bi
a
ll
y
i
mportant trans
f
ormat
i
ons, caus
i
ng
l
ater wor
k
ers
to stud
y
the extent of the occurrence of such processes in nature.
In the United States, geomicrobiology can be said to have begun with the work on iron-depositing
b
acter
i
a
b

y Har
d
er (1919). Ot
h
er ear
l
y Amer
i
can
i
nvest
i
gators o
f
geom
i
cro
bi
a
l
p
h
enomena
i
nc
l
u
d
e
J. Lipman, S. A. Waksman, R. L. Starke

y
, and H. O. Halvorson, all prominent in soil microbiolo
gy
,
and G. A. Thiel, C. Zappfe, and C. E. ZoBell, all prominent in aquatic microbiology. ZoBell was a
pi
oneer
i
n mar
i
ne m
i
cro
bi
o
l
ogy (see E
h
r
li
c
h
, 2000).
Ve r
y
fundamental discoveries in
g
eomicrobiolo
gy
continue to be made, some havin

g
been made
as the twentieth century progressed and others very recently. For instance, the concept of environ-
m
enta
l

li
m
i
ts o
f
pH an
d
E
h
for microbes in natural habitats was  rst introduced by Baas-Becking
h
e
t al. (1960) (see Cha
p
ter 6). The
p
H limits as these authors de ned them have since been extended
at both the acidic and alkaline ends of the pH range (pH 0 and 13) as a result of new observations.
L
if
e at
hi
g

h
temperature was systemat
i
ca
ll
y stu
di
e
d

f
or t
h
e

rst t
i
me
i
n t
h
e 1970s
b
y Broc
k

(1978) and associates in Yellowstone National Park in the United States. A s
p
eci c acido
p

hilic, iron-
oxidizing bacterium, originally name
d
Thiobacillus
f
errooxidan
s
a
n
d
l
ate
r r
e
n
a
m
ed

A
cidithiobacillus
f
errooxi
d
an
s
,
was discovered by Colmer et al. (1950) in acid coal mine drainage in the late 1940s
and thou
g

ht b
y
these investi
g
ators and others to be directl
y
involved in its formation b
y
promotin
g

oxidation of pyrite occurring as inclusions in bituminous coal seams (see also Chapters 16 and 20)
.
Biogeochemistry
biogeochemistry
Microbial
Microbial
ecology
Geomicrobiology
FI
GU
RE 1
.
1
I
nterrelationships between
g
eomicrobiolo
gy
, microbial ecolo

gy
, microbial bio
g
eochemistr
y
,
and bio
g
eochemistr
y
.
CRC_7906_Ch001.indd 2CRC_7906_Ch001.indd 2 11/5/2008 5:11:45 PM11/5/2008 5:11:45 PM

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×