Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thi thpt toán số 1 (231)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (116.92 KB, 6 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. −7.

D. Khơng tồn tại.

Câu 2. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích

2
2
2
2
a 2
a 5
11a


a 7
.
B.
.
C.
.
D.
.
A.
8
4
16
32
2n − 3
Câu 3. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. 0.
C. −∞.
D. +∞.
Câu 4. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 0.

C. 1.


D. 2.

Câu 5. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 6. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
24
12
6
Câu 7. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = 10.
D. P = −21.



Câu 8.√Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6 − x

B. 3 2.
C. 3.
D. 2 + 3.
A. 2 3.
Câu 9. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 10. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 11. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
4
8
2

Câu 12. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Trang 1/4 Mã đề 1


Câu 13. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
un
Câu 14. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 15. [4-1212d] Cho hai hàm số y =
x−1
x

x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−3; +∞).
D. (−∞; −3).
Câu 16. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2.
D. P = 2i.
2
2
Câu 17. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 6510 m.
D. 1134 m.
Câu 18. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có vô số.

Câu 19. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 216 triệu.
C. 220 triệu.
D. 210 triệu.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 20. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
mx − 4
Câu 21. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 34.
C. 45.
D. 67.
Câu 22. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = 0.
D. m = −3.

log 2x
Câu 23. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
2x ln 10
x
2x ln 10
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 24. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là


3


a3 3
a3 2
a
3
A.
D.
.
B.
.
C. 2a2 2.
.
24
24
12
Câu 25. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 26. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. 2a 6.
C. a 6.
D.

.
2
Trang 2/4 Mã đề 1


Câu 27. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 28. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC √là
vng góc

√ với đáy và S C = a 3.3 √
3
a 3
a 3
2a3 6
a3 6
A.
.
B.
.
C.
.
D.
.

4
2
9
12
Câu 29.
! định nào sau đây là sai?
Z Các khẳng
Z
Z
0

f (x)dx = f (x).

A.
Z
C.

f (x)dx = F(x) + C ⇒

B.
Z

f (t)dt = F(t) + C. D.

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
k f (x)dx = k

f (x)dx, k là hằng số.

Câu 30. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 1.
C. 7.
D. 2.
Câu 31. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
(1, 01)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
3

Câu 32. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 33. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.423.000.
D. 102.424.000.
2
2
2
1 + 2 + ··· + n
Câu 34. [3-1133d] Tính lim
n3
2
1
A. +∞.
B. .
C. 0.
D. .
3
3
0 0 0 0
0

Câu 35. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2
abc b2 + c2
a b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 36. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = 0.
D. x = −2.

2

Câu 37. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. 62.
D. Vô số.
Trang 3/4 Mã đề 1


Câu 38. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là



2a3 3
a3 3
a3 3
3
C.
.
B. a 3.
.
D.
.
A.
3
3
6
Câu 39. Khối đa diện đều loại {3; 5} có số đỉnh

A. 12.
B. 8.
C. 30.
D. 20.
Câu 40.
bằng 1 là:

√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
3
.
B. .
C.
.
D.
.
A.
12
4
4
2
Câu 41. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =

. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 1.
B. 3.
C.
.
D. 2.
3
Câu 42. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = 2 x . ln x.
C. y0 = x
.
D. y0 = 2 x . ln 2.
ln 2
2 . ln x
Câu 43. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 44. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 6 mặt.


D. 3 mặt.

Câu 45.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
12
6



a3 2
a3 2
C.
.
D.
.
4
2



x = 1 + 3t





Câu 46. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+
2t

x
=
1
+
7t
x
=
−1
+
2t
x = 1 + 3t
















A. 
.
C. 

y = −10 + 11t . B. 
y=1+t
y = −10 + 11t . D. 
y = 1 + 4t .
















z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
z = 1 − 5t

Câu 47. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

3
3

3
a 3
a
a
A.
.
B. a3 3.
C.
.
D.
.
3
4
12
Câu 48. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
D. {5; 3}.
log2 240 log2 15
Câu 49. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. 3.
C. −8.

D. 1.
Trang 4/4 Mã đề 1


Câu 50. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.

C. 10.

D. 6.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

D

2. A
4.

B


5.

D

6.

7.

D

8.

9.

C
B

10.

C

11. A

12.

C

13. A

14.


C

16.

C

18.

C

20.

C

15.

B

D

B

17.

C

19. A
21.


B

22. A

23. A

24.

25. A

26.

B
C

27.

B

28.

D

29.

B

30.

D


31.

B

32.

33.

D

34.

35.

C

36.

37.

C

38. A

39. A

D
B


40.

41.

D

C

42.

43. A

44. A

45. A

46. A

47. A

48. A

49.

B

50.

C


1

D

B



×