Tải bản đầy đủ (.pdf) (12 trang)

Số phức ôn thi tốt nghiệp

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (170.89 KB, 12 trang )

MATHVN.COM


www.mathvn.com



www.mathvn.com -1-






















Naêm hoïc: 2009 – 2010




MATHVN.COM


www.mathvn.com



www.mathvn.com -2-

A. SỐ PHỨC. CỘNG, TRỪ, NHÂN, CHIA SỐ PHỨC.
I. TÓM TẮT LÝ THUYẾT.
1. Số phức là một biểu thức dạng a + bi, trong đó a, b là các số thực và
số i thỏa mãn
2
1
i
= -
.
Kí hiệu
z a bi
= +

· i: đơn vò ảo, · a: phần thực, · b: phần ảo.
Chú ý:
o
z a 0i a
= + =
được gọi là số thực

(a )
Ỵ Ì
¡ £

o
z 0 bi bi
= + =
được gọi là số ảo
o
0 0 0i
= +
vừa là số thực vừa là số ảo
Biểu diễn hình học của số phức: M(a;b) biểu diễn cho số phức z Û z =
a + bi
2. Hai số phức bằng nhau. Cho hai số phức
z a bi
= +

z' a ' b'i
= +
với
a,b,a ',b'

¡

a a'
z z'
b b'
=
ì

= Û
í
=


3. Cộng và trừ số phức. Cho hai số phức
z a bi
= +

z' a ' b'i
= +
với
a,b,a ',b'

¡

(
)
(
)
z z' a a' b b' i
+ = + + +

(
)
(
)
z z' a a' b b' i
- = - + -


o Số đối của z = a + bi là –z = – a – bi (a, b
)

¡

4. Nhân hai số phức. Cho hai số phức
z a bi
= +

z' a ' b'i
= +
với
a,b,a ',b'

¡

(
)
(
)
z.z' aa' bb' ab' a 'b i
= - + +

5. Số phức liên hợp của số phức z = a + bi là
z a bi
= -

o '.'.;''; zzzzzzzzzz =+=+=
o z là số thực zz =Û ; z là số ảo zz -=Û
6. Môđun của số phức z = a + bi

o
2 2
z a b zz OM
= + = =
uuuur

o 00,0 =Û=Ỵ"³ zzCzz
o
z.z' z z' , z z' z z' z,z'
= + £ + " Ỵ
£

7. Chia hai số phức.
o Số phức nghòch đảo của z (z )0
¹
: z
z
z
2
1
1
=
-

x
y
a
b
O
M

MATHVN.COM


www.mathvn.com



www.mathvn.com -3-

o Thương của z’ chia cho z (z
0)
¹
:
zz
zz
z
zz
zz
z
z ''
'
'
2
1
===
-

o Với z .'
'
,0 wzzw

z
z
=Û=¹ ,
z
z
z
z
z
z
z
z
'
'
,
''
==
÷
ø
ư
ç
è




II. CÁC DẠNG TOÁN
Bài toán 1. Tìm phần thực và phần ảo và môđun của các số phức sau:
a.
z i (2 4i)(3 2i)
= + - +

; b.
3 3
z ( 1 i) (2i)
= - + - ; c.
( )
2
z 1 i
1 i
= + +
-

Giải.
a.
z i (2 4i)(3 2i) i 14 8i 14 7i
= + - + = + - = -

Phần thực a = 14; Phần ảo b =
7
-
; môđun
z 7 5
=
b.
3 3
z ( 1 i) (2i) 2 2i ( 8i) 2 10i
= - + - = + - - = +
Phần thực a = 2; Phần ảo b = 10; môđun
z 2 26
=
c.

( )
2
z 1 i 1 i 1 i 2
1 i
= + + = + + - =
-

Phần thực a = 2; Phần ảo b = 0; môđun
z 2
=

BÀI TẬP TƯƠNG TỰ.
1. Tìm phần thực và phần ảo và môđun của các số phức sau:
a. (4 – i) + (2 + 3i)
– (5 + i)
b. (2 + i)
3
– (3 – i)
3

c.
-
1
2 3i

d. -
3
(2 3i)

e. (1 + i)

2
– (1 – i)
2

f.
(
)
(
)
+ - -
2 2
3 i 3 i

g. (2 + i)
3
– (3 – i)
3

h.
+ - -
+ - -
2 3
3 2
(1 2i) (1 i)
(3 2i) (2 i)

i.
( )
2
4 5

3 2
2
-
- +
+
i
i
i

j. ( 1- 2 i ) +
i
i
+
+
2
1

k.
-
3 2i
i

l.
(
)
(
)
[
]
.)25(223

3
iii +

m.
- -
-
+
3 2
1
i i
i i

n.
i
i
i
i -
-
+
- 2
1
3

o.
+ +
+
- -
3 2i 1 i
1 i 3 2i


p.
( )
)32(41
43
ii
i
+-
-

2. Tính
a.
i
2
1
3
+

b.
i
i
-
+
1
1

c.
mi
m

h.

ai
bia +

i. (2 – i)
4

j.
i
2
3
2
1
1
-

n. (2 + 3i)
2

o. (2 – 3i)
3

p.
i
i
+
+
1
24

q.

2 i (1 i)(4 3i)
3 2i
+ + + -
+

MATHVN.COM


www.mathvn.com



www.mathvn.com -4-

d.
aia
aia
-
+

e.
)1)(21(
3
ii
i
+-
+

f. 2i(3 + i)(2 + 4i)
g. 3 + 2i + (6 + i)(5 + i)


k.
i
i
i
6
3
45
34
+
+
+-
l.
(
)
(
)
i
ii
+
-
+
2
21
32

m. (3 – 2i)(2 – 3i)

r.
(3 4i)(1 2i)

4 3i
1 2i
- +
+ -
-

s.
3 i
i
-
+ (5 – i)
2

t.
2 2i 1 2i
1 2i 2 2i
+ +
+
- -




Bài toán 2. Tính
2012
(1 i)
+
Giải.
1006
2012 2 1006 1006 1006 1006 2 503 1006 503 1006

(1 i) (1 i) (2i) 2 .i 2 .(i ) 2 .( 1) 2
é ù
+ = + = = = = - = -
ë û

BÀI TẬP TƯƠNG TỰ.
Tính.
a.
2 3 2009
1
i i i i
+ + + + +
b.
100
(1 )
i-

c.
2008 2008
(1 ) (1 )
+ + -
i i

Bài toán 3. Tìm các số thực x và y biết
2x yi 3 2i x yi 2 4i
+ - + = - + +

Giải.
2x 3 x 2 x 4
2x yi 3 2i x yi 2 4i (2x 3) (y 2)i (x 2) (4 y)i

y 2 4 y y 1
- = + =
ì ì
+ - + = - + + Û - + + = + + - Û Û
í í
+ = - =
ỵ ỵ

BÀI TẬP TƯƠNG TỰ.
Tìm các số thực x và y biết:
a. (2x + 3) + (y + 2) i = x – (y – 4) i
b. (2 – x) – i 2 = 3 + (3 – y) i
c. (3x - 2) + (2y + 1) i = (x + 1) – (y
– 5) i
d. (2x + y) + (y + 2) i = (x + 2) –
(y – 4) i
Bài toán 4. Tìm tập hợp các điểm M trên mặt phẳng phức biểu diễn cho
số phức z thỏa mãn:
a.
z i z 2 3i
+ = - -
; b.
z 3 1
+ £

Giải. Đặt
z x yi
= +
, khi đó:
a.

z i z 2 3i x yi i x yi 2 3i x (y 1)i x 2 (y 3)i
+ = - - Û + + = + - - Û + + = - + -

2 2 2 2
x (y 1) (x 2) (y 3)
x 2y 3 0
Û + + = - + - Û + - =

Vậy tập hợp các điểm biểu diễn số phức z là đường thẳng
x 2y 3 0
+ - =

b.
2 2 2 2
z 3 1 x yi 3 1 x 3 yi 1 (x 3) y 1 (x 3) y 1
+ £ Û + + £ Û + + £ Û + + £ Û + + £

MATHVN.COM


www.mathvn.com



www.mathvn.com -5-

Vậy tập hợp các điểm biểu diễn số phức z là hình tròn
2 2
(x 3) y 1
+ + £

tâm
I(-3;0) và bán kính bằng 1
BÀI TẬP TƯƠNG TỰ.
Tìm tập hợp các điểm M trên mặt phẳng phức biểu diễn cho số phức z
thỏa mãn:
a. 43 =++ zz
b. 2|z – i| = izz 2+-

c.
3 4
z z i
= - +

d.
1
z i
z i
-
=
+

e.
1 2
z i
- + =

a. z + 2
z
= 2 – 4i
b. 0

2
=- zz
f. 0
2
=+ zz
g. 2
z i z
+ = -

h. z = 1
i. z = iz 43+-
j. 10)_2( =- iz và '.zz = 25
k. z
£
1
l. z =1 và phần ảo của z =1
m.
(
)
243 = iz

n. 1
4
=
÷
ø
ư
ç
è


-
+
iz
iz

o.
1=
+
-
iz
iz

p. 1< z
£
2
q. 1222 -=- zzi
r. phần thực của z
thuộc đọan [0;1],
phần ảo của z
thuộc đoạn [-1;2]
c. izz 422 -=+
d. 0
2
2
=+ zz

B. PHƯƠNG TRÌNH BẬC NHẤT, BẬC HAI TRÊN TRƯỜNG SỐ
PHỨC
I. TÓM TẮT LÝ THUYẾT.
1. Căn bậc hai của số phức

o
z 0
=
có một căn bậc hai là 0
o
z a
=
là số thực dương có 2 căn bậc 2 là
a
±
o
z a
=
là số thực âm có 2 căn bậc hai là
a .i
±
o z = x + yi là số phức có căn bậc 2 là w = a + bi sao cho
2 2
2
x y a
w z
2xy b
ì
- =
= Û
í
=

(a, b, x, y
)


¡

2. Phương trình bậc hai Az
2
+ Bz + C = 0 (A, B, C là số thực cho trước,
A 0
¹
).
Tính
2
B 4AC
D = -
o
0
D >
: Phương trình có hai nghiệm phân biệt
1 2
B
z ,
2A
- ± D
=
o
0
D <
: Phương trình có hai nghiệm phân biệt
1 2
B i
z ,

2A
- ± D
=
MATHVN.COM


www.mathvn.com



www.mathvn.com -6-

o 0
=
D
: Phương trình có 1 nghiệm kép là
1 2
B
z z
2A
= = -
3. Phương trình bậc hai Az
2
+ Bz + C = 0 (A, B, C là số phức cho trước,
A 0
¹
).
Tính
2
B 4AC

D = -
o 0
¹
D
: Phương trình có hai nghiệm phân biệt
1 2
B
z ,
2A
- ± d
= ,
(
d
là 1 căn bậc hai của )
D

o 0
=
D
: Phương trình có 1 nghiệm kép là
1 2
B
z z
2A
= = -
II. CÁC DẠNG TOÁN.
Bài toán 1. Tìm căn bậc hai của các số phức sau:
a.
4
-

; b.
3 4i
-
(NC)
Giải.
a. Hai căn bậc hai của
4
-

4 .i 2i
± - = ±

b. Gọi
w x yi
= +
là căn bậc hai của
3 4i
-
, ta có:
2
2 2 4 2
2 2
2
x 2
x 1 ( ) x 2
x y 3 x 3x 4 0
y 1
x y 3
x 2
x 4

2 2
2xy 4
x 2
y y
2
2
y
x x
y
y 1
x
x
é =
ì
ì
é
= - ì =
é
í
ê
ì ì
- = - - =
ï
ê
ï
ê
= -
ì
- =
ï ï ï ï ỵ= -

=
ê
ë
ë
Û Û Û Û Û
í í í í í
ê
= -
= -
= - = -
ì

ï ï ï ï
ê
= -
ỵ ỵ
í
= -
ï ï
=

ê


ë
loại

Vậy
3 4i
-

có hai căn bậc hai là
2 i
-

2 i
- +

BÀI TẬP TƯƠNG TỰ.
1. Tìm căn bậc hai của các số phức sau:
8;3;
9
-
;
11
-
; -I; -2i; 2i; 4i
2. Tìm căn bậc hai của các số phức sau: (NC)
5 12i
- +
;
8 6i
+
;
33 56i
-
;
3 4i
- +
; 3+4i; 5 – 12i
Bài toán 2. Giải các phương trình sau trên tập số phức:

a.
(3 2i)z 4 5i 7 3i
- + + = -
; b.
z
2 3i 5 2i
4 3i
+ - = -
-

Giải.
a.
3 8i 25 18
(3 2i)z 4 5i 7 3i (3 2i)z 3 8i z i
3 2i 13 13
-
- + + = - Û - = - Û = = -
-

b.
z z
2 3i 5 2i 3 i z (3 i)(4 3i) 15 5i
4 3i 4 3i
+ - = - Û = + Û = + - = -
- -

BÀI TẬP TƯƠNG TỰ.
Giải các phương trình sau trên tập số phức:
a.
i

i
z
i
i
+
+
-
=
-
+
2
31
1
2

h.
3 5i
2 4i
z
+
= -

MATHVN.COM


www.mathvn.com



www.mathvn.com -7-


b. 2iz + 1 – i = 0
c. (1 – i )z + 2 – i = 2z + i
d. ( iz –1 )( z + 3i )(
z
– 2 + 3i) =
0
e. ( 2 i)
z
– 4 = 0
f.
(
)
4 5i z 2 i
- = +

g.
( ) ( )
2
3 2i z i 3i
- + =

s. (1 + 3i)z – (2 + 5i) = (2 + i)z
t. (3 + 4i)z =(1 + 2i)( 4 + i)
i.
(2 3 ) 5 2
4 3
z
i i
i

+ - = -
-

j. (1 + 3i)z – (2 + 5i)= (2 + i)
k. (3 – 2i)z + (6 – 4i)= 5 – i
l. (3 + 4i)z + (1 – 3i)=2 + 5i.
m.
1 1
z 3 i 3 i
2 2
- = +
ỉ ư
ç ÷
è ø

n. 0)
2
1
](3)2[( =+++-
i
izizi
Bài toán 3. Giải các phương trình sau trên tập số phức: (NC)
a.
2
7z 3z 2 0
+ + =
; b.
2
3x 2x 1 0
- + - =


Giải.
a.
2
7z 3z 2 0
+ + =

2
b 4ac 47 0
D = - = - <

Phương trình có 2 nghiệm phân biệt:
1
b i
3 47.i 3 47
z i
2a 14 14 14
- + D
- +
= = = - +
2
b i
3 47.i 3 47
z i
2a 14 14 14
- - D
- -
= = = - -
b.
2

3x 2x 1 0
- + - =

2
' b' ac 2 0
D = - = - <

Phương trình có 2 nghiệm phân biệt:
1
b' i '
1 2.i 1 2
x i
a 3 3 3
- + D
- +
= = = -
-

2
b' i '
1 2.i 1 2
x i
a 3 3 3
- - D
- -
= = = +
-

BÀI TẬP TƯƠNG TỰ.
1. Giải các phương trình sau trên tập số phức:

a. 01.3
2
=+- xx
b. 02.32.23
2
=+- xx
c.
2
3 2 0
x x
- + =

d.
2
3 2 0
+ + =
x x

e.
2
1 0
+ + =
x x

f. z
4
–8 = 0
g. x
3
– 1 = 0

h. z
3
+ 1 = 0
i. z
4
+ 4 = 0
j. 5z
2
– 7z + 11 = 0
k. z
2
- 2
3
z + 7 = 0
l. z
3
– 8 = 0
m. z
2
+ z +7 = 0
n. z
2
– z + 1 = 0
o. z
2
+ 2z + 5 = 0
p. 8z
2
– 4z + 1 = 0
q. x

2
+ 7 = 0
r. x
2
– 3x + 3 = 0
s. x
2
–5x +7=0

t. x
2
–4x + 11 = 0
u. z
2
– 3z + 11 = 0
MATHVN.COM


www.mathvn.com



www.mathvn.com -8-

2. Giải phương trình sau trên trường số phức
a. z
4
– 5z
2
– 6 = 0

b. z
4
+7z
2
– 8 = 0
c. z
4
– 8z
2
– 9 = 0
d. z
4
+ 6z
2
+ 25 = 0
e. z
4
+ 4z – 77 = 0
f. 8z
4
+ 8z
3
= z + 1
g. z
4
+ z
3
+
2
1

z
2
+ z + 1 = 0
h. z
5
+ z
4
+ z
3
+ z
2
+ z + 1 =0
i.
4 3 7
2
z i
z i
z i
- -
= -
-

j.
3 2
1 1 1
0
2 2 2
z z z
+ + - =


Bài toán 4. Giải các phương trình sau trên tập số phức: (NC)
a.
2
x (3 4i)x 5i 1 0
- + + - =
; b.
2
z 2iz 2i 1 0
- + - =

Giải.
a.
2
x (3 4i)x 5i 1 0
- + + - =

2 2
b 4ac 3 4i (1 2i) 0
D = - = - + = + ¹

Gọi
d
là một căn bậc hai của
D
, ta có
1 2i
d = +

Do
0

D ¹
, phương trình có 2 nghiệm phân biệt:
1
b 3 4i 1 2i
x 2 3i
2a 2
- + d + + +
= = = +

2
b 3 4i (1 2i)
x 1 i
2a 2
- - d + - +
= = = +

b.
2
z 2iz 2i 1 0
- + - =

2 2
' b' ac 2i (1 i) 0
D = - = - = - ¹

Gọi
'
d
là một căn bậc hai của
'

D
, ta có
' 1 i
d = -

Do
' 0
D ¹
, phương trình có 2 nghiệm phân biệt:
1
b' ' i 1 i
z 1
a 1
- + d + -
= = =

2
b' ' i (1 i)
z 1 2i
a 1
- - d - -
= = = - +

BÀI TẬP TƯƠNG TỰ. (NC)
1. Giải các phương trình sau trên tập số phức:
a. x
2
– (3 – i)x + 4 – 3i = 0
b. (z
2

+ i)(z
2
– 2iz - 1) = 0
c.
(
)
2
1 2 0
+ + - - =
x i x i

d. 2z
2
– iz + 1 = 0
e. z
2
+ (-2 + i)z – 2i = 0
f. z
2
+ (1 – 3i)z – 2(1 + i) = 0
g. z
2
+ ( 1 – 3 i)z – 2(1 + i) = 0
h.
(
)
2
2 8 14 23 0
x i x i
- + + - =


j.
2
80 4099 100 0
- + - =
z z i

k.
(
)
(
)
2
3 6 3 13 0
+ - - + - + =
z i z i

l.
(
)
2
cos sin cos sin 0.
- + + =
z i z i
j j j j

m.
(
)
4 2

8 1 63 16 0
- - + - =
z i z i

n.
(
)
4 2
24 1 308 144 0
- - + - =
z i z i

o. ( 1 – i)x
2
– 2x – (11 + 3i) = 0
p. ( 1 + i)x
2
– 2(1 – i)x + 1 – 3i = 0
MATHVN.COM


www.mathvn.com



www.mathvn.com -9-

i.
(
)

(
)
2
5 14 2 12 5 0
- - - + =
z i z i
q. z
2
+ 18z + 1681 = 0
2. Giải các hệ phương trình :
a.

í
ì
-=+
+=+
izz
izz
25
4
2
2
2
1
21

b.

í
ì

+-=+
=
izz
izz
.25
.55.
2
2
2
1
21

c.
2 2
1 2
1 2
5 2
4
ì
+ = +
í
+ = -

z z i
z z i

d.
2 2
4 0
2

ì
+ + =
í
+ =

u v uv
u v i

e.
2
1
ì - =
ï
í
- = -
ï

z i z
z i z


C. DẠNG LƯNG GIÁC CỦA SỐ PHỨC. (NC)
I. TÓM TẮT LÝ THUYẾT.
1. Dạng lượng giác của số phức.
z =
r(cos isin )
j + j
(r > 0) là dạng lương giác của z = a + bi (a, b
, z 0)
Ỵ ¹

¡
o
2 2
r a b
= +
là môđun của z
o
j
là một acgumen của z thỏa
a
cos
r
b
sin
r
ì
j =
ï
ï
í
ï
j =
ï


2. Nhân chia số phức dưới dạng lượng giác. Nếu z =
r(cos
isin ) , z' r'(cos ' isin ')
j + j = j + j
thì :

o
z.z' r.r'[cos( ') isin( ')]
= j+ j + j + j

o
z r
[cos( ') isin( ')]
z' r'
= j - j + j- j

3. Công thức Moa-vrơ :
*
NnỴ thì
n n
[r(cos isin )] r (cosn isin n )
j + j = j + j

Nhân xét:
n
(cos isin ) cosn isin n
j + j = j + j

4. Căn bậc hai của số phức dưới dạng lượng giác
Căn bậc hai của số phức z = r(cos )sin
j
j
i
+
(r > 0) là
(cos sin )

2 2
r i
j j
+ và
(cos sin ) [cos( ) sin( )]
2 2 2 2
r i r i
j j j j
p p
- + = + + +
II. CÁC DẠNG TOÁN.
Bài toán 1. Viết dạng lượng giác của các số phức sau:
a.
z 2 2i
= -
; b.
z 1 3.i
= - -
Giải.
a.
z 2 2i
= -

o Mô đun
2 2
r a b 2 2
= + =
MATHVN.COM



www.mathvn.com



www.mathvn.com -10-

o Gọi
j
là một acgumen của z ta có
1
cos
2
1
4
sin
2
ì
j =
ï
p
ï
Þ j = -
í
ï
j = -
ï


Dạng lượng giác z 2 2 cos isin
4 4

é p p ù
ỉ ư ỉ ư
= - + -
ç ÷ ç ÷
ê ú
è ø è ø
ë û

b.
z 1 3.i
= - -
o Mô đun
2 2
r a b 2
= + =

o Gọi
j
là một acgumen của z ta có
1
cos
2
2
3
3
sin
2
ì
j = -
ï

p
ï
Þ j = -
í
ï
j = -
ï


Dạng lượng giác
2 2
z 2 cos isin
3 3
é p p ù
ỉ ư ỉ ư
= - + -
ç ÷ ç ÷
ê ú
è ø è ø
ë û

BÀI TẬP TƯƠNG TỰ.
1. Tìm một acgumen của mỗi số phức sau:
a. i.322 +-
b. 4 – 4i
c. 1 – i.3
d.
4
sin.
4

cos
p
p
i-
e.
8
cos.
8
sin
p
p
i
f. )1)(3.1( ii +-
g.
1 3
1
-
+
i
i

2. Thực hiện phép tính
a. 5 )
4
sin.
4
(cos3).
6
sin.
6

(cos
p
p
p
p
ii ++
b.
)15sin.15(cos3
)45sin.45(cos2
00
00
i
i
+
+

c. 3(cos20
o
+ isin20
o
)(cos25
o
+
isin25
o
)
d.
)
2
sin.

2
(cos2
)
3
2
sin.
3
2
(cos2
pp
pp
i
i
+
+

3. Viết dưới dạng lượng giác các số phức sau:
a. 31 i-
b. 1 + i
c. )1)(31( ii +-
d.
i
i
+
-
1
31

e. )3.(.2 ii -
f.

i
2
2
1
+

g. z =
j
j
cos.sin i
+

Bài toán 2. Tính:
a.
(
)
6
10
(1 i) 3 i
- +
; b.
( )
10
9
(1 i)
3 i
+
+

Giải.

a.
(
)
6
10
(1 i) 3 i
- +

( )
10
10 5
5 5
(1 i) 2 cos isin 2 cos isin 32 0 i 32i
4 4 2 2
é ù
ỉ p p ư é p p ù
ỉ ư ỉ ư ỉ ư ỉ ư
- = - + - = - + - = - = -
ê ú
ç ÷ ç ÷ ç ÷ ç ÷
ç ÷
ê ú
è ø è ø è ø è ø
è ø ë û
ë û

MATHVN.COM


www.mathvn.com




www.mathvn.com -11-

( )
( ) ( )
6
6
6 6
3 i 2 cos isin 32. cos isin 2 1 0i 2
6 6
é p p ù
ỉ ư
+ = + = p + p = - + = -
ç ÷
ê ú
è ø
ë û

(
)
( )
5
10
(1 i) 3 i 32i. 64 2048i
Þ - + = - - =
b.
( )
10

9
(1 i)
3 i
+
+

( )
10
10 5
5 5
(1 i) 2 cos isin 2 . cos isin 32 i 32i
4 4 2 2
é p p ù p p
ỉ ư ỉ ư
+ = + = + = =
ç ÷ ç ÷
ê ú
è ø è ø
ë û

( )
9
9
9
3 3
3 i 2 cos isin 2 cos isin 512i
6 6 2 2
é p p ù p p
ỉ ư ỉ ư
+ = + = + = -

ç ÷ ç ÷
ê ú
è ø è ø
ë û

( )
10
9
(1 i) 1
16
3 i
+
Þ = -
+

BÀI TẬP TƯƠNG TỰ.
Tính :
a. [
00
30sin30(cos2 i+ )]
7

b.
6
)3( i-
c.
33
1
1
÷

ø
ư
ç
è

-
+
i
i

d.
12
2
3
2
1
÷
÷
ø
ư
ç
ç
è

+ i
e.
2010
i 1
i
+

ỉ ư
ç ÷
è ø

f.
21
321
335
÷
÷
ø
ư
ç
ç
è

-
+
i
i

g.
5 7
cos sin (1 3 )
3 3
ỉ ư
- +
ç ÷
è ø
i i i

p p

h.
280
3
1
÷
ø
ư
ç
è

+-
+
i
i

i.
(
)
25
1 i+
j.
(
)
( )
49
50
3
1

i
i
+
+

k. (cos12
o
+ isin12
o
)
5


Bài toán 3. Tìm căn bậc hai của các số phức sau:
a.
z 1 i 3
= - - ; b.
1 i 3
z
1 i
-
=
+

Giải.
a.
1 i 3
- -
Dạng lượng giác:
2 2

z 2 cos isin
3 3
é p p ù
ỉ ư ỉ ư
= - + -
ç ÷ ç ÷
ê ú
è ø è ø
ë û

Hai căn bậc hai của z là
1
1 3 1 3 2 6
w 2 cos isin 2 i i i
3 3 2 2 2 2
2 2
ỉ ư
é p p ù
ỉ ư ỉ ư
= - + - = - = - = -
ç ÷
ç ÷ ç ÷
ê ú
ç ÷
è ø è ø
ë û
è ø

2
1 3 1 3 2 6

w 2 cos isin 2 i i i
3 3 2 2 2 2
2 2
ỉ ư
é p p ù
ỉ ư ỉ ư
= - - + - = - - = - + = - +
ç ÷
ç ÷ ç ÷
ê ú
ç ÷
è ø è ø
ë û
è ø

b.
1 i 3
z
1 i
-
=
+

Dạng lượng giác
7 7
z 2 cos isin
12 12
é p p ù
ỉ ư ỉ ư
= - + -

ç ÷ ç ÷
ê ú
è ø è ø
ë û

MATHVN.COM


www.mathvn.com



www.mathvn.com -12-

Hai căn bậc hai của z là
4
1
7 7
w 2 cos isin
24 24
é p p ù
ỉ ư ỉ ư
= - + -
ç ÷ ç ÷
ê ú
è ø è ø
ë û


4 4

2
7 7 17 17
w 2 cos isin 2 cos isin
24 24 24 24
é p p ù é p p ù
ỉ ư ỉ ư ỉ ư ỉ ư
= - - + - = +
ç ÷ ç ÷ ç ÷ ç ÷
ê ú ê ú
è ø è ø è ø è ø
ë û ë û

BÀI TẬP TƯƠNG TỰ.
Tìm căn bậc hai của mỗi số phức sau :
a. –1 + 4 i.3
b. 4 + 6 i.5
c. –1 – 2 i.6
d. 1+ 34 i
e. ( 3 - i)
6

f.
2004
1
÷
ø
ư
ç
è


+ i
i

g. i3411+-
h.
( )
i-1
2
2

i.
4
sin
4
cos
p
p
i-
j.
3
sin
3
cos
p
p
i-
k.
4 6 5
i
+

l.
1 2 6
i
- -

×