Tải bản đầy đủ (.pdf) (4 trang)

Đề ôn thi thptqg toán s1 (356)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (108.57 KB, 4 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 3 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

C. 27.
D. 8.
A. 9.
B. 3 3.
Câu 2. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 8%.
D. 0, 5%.
x2 − 9
Câu 3. Tính lim
x→3 x − 3
A. −3.

B. 6.

C. +∞.



D. 3.

Câu 4. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường thẳng
BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 5. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.
C. 10.
D. 12.
!
1
1
1

+
+ ··· +
Câu 6. Tính lim
1.2 2.3
n(n + 1)
3
D. 2.
A. 0.
B. 1.
C. .
2
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 3
a 3
a 2
.
B. a3 3.
.
D.
.
A.
C.

4
2
2
3a
Câu 8. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng
cách từ A đến mặt phẳng (S BD) bằng

2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
4
3
3
Câu 9. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 10. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13

5
9
A.
.
B. −
.
C.
.
D. − .
25
100
100
16
log2 240 log2 15
Câu 11. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 1.
C. 4.
D. 3.
Câu 12. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. (−∞; 6, 5).

D. [6, 5; +∞).

Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √



2a3 3
a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
3
6
3
Trang 1/3 Mã đề 1


Câu 14. Tính lim
x→2

A. 3.

x+2
bằng?
x

B. 0.

C. 2.

D. 1.

Câu 15. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích

a2 5
a2 2
11a2
a2 7
.
B.
.
C.
.
D.
.
A.
8
16
4
32

Câu 16. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là 1.
Câu 17. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 20.
D. 3, 55.

Câu 18. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.

D.
.
6
18
6
36
Câu 19. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.
C. 30.
D. 20.
a
1
Câu 20. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 4.
C. 2.
D. 1.
Câu 21. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =

.
D. m =
.
4 − 2e
4e + 2
4 − 2e
4e + 2
Câu 22. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 23. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).
x→a

D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x+1
bằng
Câu 24. Tính lim

x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
6
3
2
Câu 25. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
x+3
nghịch biến trên khoảng
Câu 26. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. Vô số.
B. 2.
C. 1.
D. 3.
Trang 2/3 Mã đề 1


1

Câu 27. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.
Câu 28. Dãy! số nào có giới hạn bằng 0?!
n
n
6
−2
A. un =
.
B. un =
.
5
3

C. 2.

D. −2.

C. un = n2 − 4n.

D. un =

n3 − 3n
.
n+1

Câu 29. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng




a 2
a 2
A.
C.
.
B. a 3.
.
D. a 2.
3
2
Câu 30. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√là
√ với đáy và S C = a 3. 3Thể

3
3
a 3
2a 6
a 6
a3 3
A.
.
B.
.

C.
.
D.
.
2
9
12
4
Câu 31. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =

3
3
2a 3
2a
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3

3
3
Câu 32. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 1.
D. 22016 .
Câu 33. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3 15
a3
a3 15
A.
.
B.
.
C.
.
D.
.
25
25
3
5
x3 − 1
Câu 34. Tính lim
x→1 x − 1

A. 0.
B. +∞.
C. 3.
D. −∞.
Câu 35. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
B. −2.
C. − .
A. .
2
2
log √a 5
Câu 36. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

1
A. .
B. 25.
C. 5.
5
Câu 37. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.
C. 2.

D. 2.

D. 5.
D. 4.


Câu 38. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
Câu 39. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln 2.
B. y0 = x
.
C. y0 = 2 x . ln x.
D. y0 =
.
2 . ln x
ln 2
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 40. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
2
A.
.

B.
.
C. 2a 2.
D.
.
24
12
24
- - - - - - - - - - HẾT- - - - - - - - - Trang 3/3 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B

4.

5.

D


6.

7.

D

8. A

9.

D

11. A
D

13.
B

19.
21.

C

B

10.

B

12.


B
C

16.

B

18.

B

20. A

B

23.

C

14.

15. A
17.

B

22.

C


24. A

C

25.

D

26.

27.

D

28.

29.

C

30.

31.

C

32.

33.


B

34.

35.

B

36.

37. A

38. A

39. A

40.

1

D
B
C
B
C
B
D




×