Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 5 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 6).
Câu 2. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 6%.
D. 0, 8%.
Câu 3. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 4. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
C. V = S h.
D. V = S h.
A. V = 3S h.
B. V = S h.
2
3
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
10a3 3
3
3
3
.
A. 10a .
B. 40a .
C. 20a .
D.
3
log(mx)
Câu 6. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m ≤ 0.
Câu 7. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
A. 2.
B. 2 13.
C.
.
D. 26.
13
π π
Câu 8. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. 7.
D. −1.
Câu 9. Giá√trị cực đại của hàm số y =√x3 − 3x2 − 3x + 2
√
A. 3 − 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
√
D. −3 + 4 2.
Câu 10. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối lập phương.
1
Câu 11. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = −3.
D. m = 4.
Câu 12. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 4.
D. V = 6.
Câu 13. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
Trang 1/5 Mã đề 1
Câu 14. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
Câu 15. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 16. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.
C. 6.
D. 12.
Câu 17. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 20 .(3)30
C 40 .(3)10
C 20 .(3)20
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
√3
4
Câu 18. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
5
2
B. a 3 .
C. a 8 .
D. a 3 .
A. a 3 .
1
Câu 19. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.
cos n + sin n
Câu 20. Tính lim
n2 + 1
A. 1.
B. 0.
C. +∞.
D. −∞.
Câu 21. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; .
C.
; +∞ .
2
2
2
!
1
D. −∞; − .
2
log 2x
Câu 22. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 2 ln 2x
1
.
B. y0 =
.
.
C. y0 = 3
A. y0 = 3
3
2x ln 10
x
x ln 10
log 2x
Câu 23. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1 − 2 log 2x
1
.
C. y0 =
.
A. y0 =
.
B. y0 = 3
3
x
2x ln 10
2x3 ln 10
x2 − 3x + 3
Câu 24. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 1.
C. x = 3.
D. D = (1; +∞).
D. y0 =
1 − 4 ln 2x
.
2x3 ln 10
D. y0 =
1 − 2 ln 2x
.
x3 ln 10
D. x = 0.
Câu 25. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 2.
C. +∞.
D. 0.
Câu 26. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. 1.
D. e2016 .
Câu 27. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4 − 2e
Câu 28. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 10.
D. m =
1 + 2e
.
4e + 2
D. 27.
Trang 2/5 Mã đề 1
Câu 29. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.
√
C. 8.
D. 9.
A. 27.
B. 3 3.
!4x
!2−x
2
3
Câu 30. Tập các số x thỏa mãn
≤
là
3 # 2
"
!
"
!
#
2
2
2
2
A. − ; +∞ .
B. −∞; .
C.
; +∞ .
D. −∞; .
3
5
5
3
d = 120◦ .
Câu 31. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.
.
C. 2a.
D. 4a.
2
x+2
Câu 32. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. 1.
D. Vô số.
Câu 33. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 1.
C. 3.
D. 2.
Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 3
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
24
24
48
8
Câu 35. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(4; −8).
D. A(−4; 8).
Câu 36. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 37. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.
C. 4.
D. 6.
Câu 38. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 39.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
B. 10.
C. 2.
D. 1.
A. 2.
!
x+1
Câu 40. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
A. 2017.
B.
.
C.
.
D.
.
2018
2018
2017
Trang 3/5 Mã đề 1
2mx + 1
1
Câu 41. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 0.
C. 1.
D. −2.
Câu 42. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
C.
.
D.
.
A. a3 .
B.
24
6
12
Câu 43. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. log2 2020.
D. 13.
Câu 44. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 18 tháng.
D. 15 tháng.
Câu 45. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = [2; 1].
2
D. D = R.
Câu 46. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 47. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 48. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
−2
C. M = e − 2; m = 1.
D. M = e−2 + 1; m = 1.
log7 16
bằng
Câu 49. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. 2.
B. 4.
C. −4.
D. −2.
Câu 50. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. β = a β .
B. aα bα = (ab)α .
C. aα+β = aα .aβ .
D. aαβ = (aα )β .
a
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/5 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.
D
2. A
4.
B
5.
C
6. A
7.
C
8.
9.
11.
D
B
13.
B
10.
C
12.
C
14. A
C
15.
C
D
16.
17. A
C
18. A
19.
D
20.
21. A
B
22.
C
23.
D
24.
B
25.
D
26.
B
27.
B
28. A
29.
B
30. A
31.
B
32. A
33.
35.
D
34. A
B
37.
D
38.
39.
D
40.
41.
B
42.
43.
B
44.
45.
D
47. A
49.
C
36.
1
C
D
B
46.
C
48.
C
50. A
C
D