Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thptqg c5 (269)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (117.89 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho
Z hai hàm y =
Z
0
A. Nếu
f (x)dx =
Z
Z
B. Nếu
f (x)dx =
Z
Z
C. Nếu
f (x)dx =

f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
g(x)dx thì f (x) = g(x), ∀x ∈ R.

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z


0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
2

Câu 2. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. 2 .
B. √ .
C. 3 .
e
e
2 e
Câu 3. Tính lim
x→2

A. 2.

x+2
bằng?
x
B. 1.

C. 0.

D.


1
.
2e3

D. 3.

Câu 4. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 15
a3
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
5
3
25
25
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD


√ là
3
3
3
3
8a 3
4a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 6. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.
C. 30.
D. 8.
π
Câu 7. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3


trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 2.
C. T = 3 3 + 1.
D. T = 4.

Câu 8. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


a3 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
36
6
6
18

Câu 9. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 10. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 11. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Trang 1/4 Mã đề 1


!4x
!2−x
2
3
Câu 12. Tập các số x thỏa mãn


3 # 2
#
2
2

B. −∞; .
A. −∞; .
3
5

!
2
C.
; +∞ .
5

!
2
D. − ; +∞ .
3

Câu 13. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

"

"

Câu 14. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 7 3.
C. 8 3.
D. 16.
Câu 15. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −3.

D. −7.

Câu 16. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
Câu 17. Tính lim
A. 0.

B. Câu (III) sai.
cos n + sin n
n2 + 1
B. +∞.

C. Câu (II) sai.


D. Khơng có câu nào
sai.

C. −∞.

D. 1.

Câu 18. [2] Tổng các nghiệm của phương trình 9 − 12.3 + 27 = 0 là
A. 27.
B. 10.
C. 3.
x

x

D. 12.

Câu 19. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 4).
D. (2; 4; 3).
Z 1
6
2
3
. Tính
f (x)dx.
Câu 20. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √

0
3x + 1
A. −1.

B. 4.

C. 6.

D. 2.

Câu 21. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối lập phương.
D. Khối 12 mặt đều.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 22. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 2.
C. 1.
D. 7.
Câu 23. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 3.
C. 1.

D. 2.


Câu 24. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
1

Câu 25. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = R.
C. D = (−∞; 1).
Câu 26. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 =
.
B. y0 = .
x ln 10
x

C.

1
.
10 ln x

D. D = (1; +∞).
D. y0 =


ln 10
.
x
Trang 2/4 Mã đề 1


 π π
Câu 27. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. 7.
D. −1.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 28. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
.
B. 2a 2.
.
D.
.
C.

A.
24
24
12
Câu 29. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2


A. −3 + 4 2.
B. 3 + 4 2.
C. 3 − 4 2.
D. −3 − 4 2.
Câu 30. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 7 mặt.

D. 9 mặt.

Câu 31. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. − .
B. .
C. −2.
D. 2.
2
2
1
Câu 32. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3

A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 33. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 1587 m.
D. 387 m.
Câu 34. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.

C. 4.

D. 5.

Câu 35. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
2

Câu 36. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.

B. 1 − log3 2.
C. 2 − log2 3.

D. 1 − log2 3.

2

Câu 37. Tính lim

2n − 1
3n6 + n4

2
.
3
Câu 38. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 3.
A. 2.

B. 1.

C.

D. 0.

D. 0.
x+2
Câu 39. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =

đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 2.
D. 1.
!
1
1
1
+ ··· +
Câu 40. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. +∞.
C. .
D. 2.
2
2
Câu 41. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối lập phương.
C. Khối tứ diện.
D. Khối bát diện đều.
Trang 3/4 Mã đề 1



Câu 42. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
2a
5a
.
B.
.
C. .
D.
.
A.
9
9
9
9
Câu 43. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
a b2 + c2
c a2 + b2
abc b2 + c2
b a2 + c2

.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
2n + 1
Câu 44. Tính giới hạn lim
3n + 2
1
2
3
C. .
D. .
A. 0.
B. .
2
2
3
Câu 45. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.

C. 0, 6%.
D. 0, 8%.
Câu 46. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 47. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 32π.
D. 8π.
Câu 48. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.
C. 12.
D. 20.
2x + 1
Câu 49. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 2.
C. −1.
D. 1.
2
Câu 50. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
A.
.
B. 2a 2.
C. a 2.
D.
.
4
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2. A

B

3. A

4.

5. A


6.

7.
9.

D

10.

B
C

13. A
15.

B

8.

D

11.

D

B

17. A


C

12.

D

14.

D

16.

D
C

18.

19.

B

20.

21.

B

22.

23.


D

24. A

25.

D

26. A

B
D

27. A

28.

29. A

30.

D

32.

D

31.


C

33. A
35.

34. A
B

36.

37.

D

C

38.

D
D

39.

C

40.

41.

C


42.

43.

C

B

44.

B

45. A

D

46.

48.

D

50.

D

49.

1


C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×