Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (949)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.28 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Số phức z =
A. 1.

(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
B. 2.
C. 21008 .
D. 0.

Câu 2. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z + z = 2bi.
B. |z2 | = |z|2 .
C. z · z = a2 − b2 .
D. z − z = 2a.
Câu 3. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 .
B. (1 + i)2018 = 21009 i. C. (1 + i)2018 = −21009 i. D. (1 + i)2018 = −21009 .
!2016
!2018
1−i
1+i
+


bằng
Câu 4. Số phức z =
1−i
1+i
A. 2.
B. 0.
C. 1 + i.
D. −2.
Câu 5.
√ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i. Khi đó mơ-đun của số phức w√= 6z − 25i là
B. 13.
C. 5.
D. 2 5.
A. 29.
4 − 2i (1 − i)(2 + i)
Câu 6. Phần thực của số phức z =
+

2−i
2 + 3i
11
11
29
29
B. − .
C. .
D. .
A. − .
13
13

13
13
Câu 7. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (2; 3).
B. (12; +∞).
C. (3; +∞).
D. (−∞; 3).
Câu 8. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường trịn. Tâm của đường trịn đó có tọa độ là
A. (−2; 0).
B. (0; −2).
C. (0; 2).
D. (2; 0).
Câu 9. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 7.
B. 17.
C. 15.
D. 3.
Câu 10. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 5.
B. 2.
C. 4.
D. 3.
Câu 11. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
B. y′ = − x ln1 3 .
C. y′ = 1x .
A. y′ = x ln1 3 .
i
R2

R2h
Câu 12. Nếu 0 f (x)dx = 4 thì 0 12 f (x) − 2 dx bằng
A. 8.
B. 0.
C. −2.

D. y′ =

ln 3
.
x

D. 6.

Câu 13. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
3
3
1
A. .
B. .
C. − .
D. − .
2
2
2
2
Câu 14. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 5 − 2i và −5 + 2i.
B. 4 + i và −4 + i.

C. 4 − i và 2 + 3i.
D. 4 − i và −4 + i.
Câu 15. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?


A. |w| = 13.
B. |w| = 5.
C. |w| = 37.
D. |w| = 5 13.
Câu 16. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i bằng bao nhiêu ?

A. |w| = 5.
B. |w| = 73.
C. |w| = 5.
D. |w| = 3 5.
Trang 1/5 Mã đề 001


Câu 17. Căn bậc hai của -4 trong tập số phức là.
A. không tồn tại.
B. 4i.
C. 2 hoặc -2.

D. 2i hoặc -2i.

Câu 18. Biết z = 1 + 2i là một nghiệm phức của phương trình z + (m − 1)z + m − 1 = 0 (m là tham số

phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
7
3
B. .
C. − .
D. .
A. − .
4
4
4
4
2
Câu 19. Gọi z1 và z2 là các nghiệm của phương trình z − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên√mặt phẳng phức. Khi đó độ dài của MN là

B. MN = 5.
C. MN = 5.
D. MN = 4.
A. MN = 2 5.
2

Câu 20. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 1.
B. −1.
C. 0.
D. 2.
Câu 21. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 8 = 0.
C. x − y + 4 = 0.
D. x + y − 5 = 0.

Câu 22. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 4.
C. max |z| = 7.
D. max |z| = 3.
Câu 23. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 4.
C. r = 22.
D. r = 20.
Câu 24. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.



3
2
.
B. P = 3.
C. P = 2.
D. P =
.
A. P =

2
2
Câu 25. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
4
2
1
1
A. √ .
C. √ .
D. .
B. √ .
2
13
2
5

Câu 26. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
1
3
3

A. ≤ |z| ≤ 2.
B. |z| < .
C. < |z| < .
D. |z| > 2.
2
2
2
2
Câu 27. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. π.
C. 3π.
D. 4π.






−2 − 3i


Câu 28. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1


= 1.

√ 3 − 2i
A. max |z| = 1.
B. max |z| = 3.
C. max |z| = 2.
D. max |z| = 2.
Câu 29. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 20.
C. r = 5.
D. r = 22.
Câu 30. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. −1.
B. 0.
C. 2.
D. 1.
Câu 31. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 4 và 3.
B. 5 và 4.
C. 5 và 3.
D. 10 và 4.
Trang 2/5 Mã đề 001


Câu 32. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 4 = 0.

C. x − y + 8 = 0.
D. x + y − 5 = 0.
Câu 33. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2
A. 18.
B. 8.
C. 9.
D. 4.
Câu 34. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.



B. 2 5.
C. 5.
D. 15.
A. 10.
Câu 35. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
3
1
A. |w|min = 2.
B. |w|min = .
C. |w|min = .
D. |w|min = 1.
2
2
Câu 36. (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 − z2 | = 2. Tìm giá
trị lớn nhất√của biểu thức P = |z1 | + |z2 |. √



A. P = 4 6.
B. P = 34 + 3 2.
C. P = 5 + 3 5.
D. P = 2 26.
2
1
Câu 37. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2









1
z1
z2
. Tính giá trị biểu thức P =




×