Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Số phức z =
A. 1.
(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
B. 2.
C. 21008 .
D. 0.
Câu 2. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z + z = 2bi.
B. |z2 | = |z|2 .
C. z · z = a2 − b2 .
D. z − z = 2a.
Câu 3. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 .
B. (1 + i)2018 = 21009 i. C. (1 + i)2018 = −21009 i. D. (1 + i)2018 = −21009 .
!2016
!2018
1−i
1+i
+
bằng
Câu 4. Số phức z =
1−i
1+i
A. 2.
B. 0.
C. 1 + i.
D. −2.
Câu 5.
√ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i. Khi đó mơ-đun của số phức w√= 6z − 25i là
B. 13.
C. 5.
D. 2 5.
A. 29.
4 − 2i (1 − i)(2 + i)
Câu 6. Phần thực của số phức z =
+
là
2−i
2 + 3i
11
11
29
29
B. − .
C. .
D. .
A. − .
13
13
13
13
Câu 7. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (2; 3).
B. (12; +∞).
C. (3; +∞).
D. (−∞; 3).
Câu 8. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường trịn. Tâm của đường trịn đó có tọa độ là
A. (−2; 0).
B. (0; −2).
C. (0; 2).
D. (2; 0).
Câu 9. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 7.
B. 17.
C. 15.
D. 3.
Câu 10. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 5.
B. 2.
C. 4.
D. 3.
Câu 11. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
B. y′ = − x ln1 3 .
C. y′ = 1x .
A. y′ = x ln1 3 .
i
R2
R2h
Câu 12. Nếu 0 f (x)dx = 4 thì 0 12 f (x) − 2 dx bằng
A. 8.
B. 0.
C. −2.
D. y′ =
ln 3
.
x
D. 6.
Câu 13. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
3
3
1
A. .
B. .
C. − .
D. − .
2
2
2
2
Câu 14. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 5 − 2i và −5 + 2i.
B. 4 + i và −4 + i.
C. 4 − i và 2 + 3i.
D. 4 − i và −4 + i.
Câu 15. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?
√
√
A. |w| = 13.
B. |w| = 5.
C. |w| = 37.
D. |w| = 5 13.
Câu 16. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i bằng bao nhiêu ?
√
A. |w| = 5.
B. |w| = 73.
C. |w| = 5.
D. |w| = 3 5.
Trang 1/5 Mã đề 001
Câu 17. Căn bậc hai của -4 trong tập số phức là.
A. không tồn tại.
B. 4i.
C. 2 hoặc -2.
D. 2i hoặc -2i.
Câu 18. Biết z = 1 + 2i là một nghiệm phức của phương trình z + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
7
3
B. .
C. − .
D. .
A. − .
4
4
4
4
2
Câu 19. Gọi z1 và z2 là các nghiệm của phương trình z − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên√mặt phẳng phức. Khi đó độ dài của MN là
√
B. MN = 5.
C. MN = 5.
D. MN = 4.
A. MN = 2 5.
2
Câu 20. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 1.
B. −1.
C. 0.
D. 2.
Câu 21. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 8 = 0.
C. x − y + 4 = 0.
D. x + y − 5 = 0.
√
Câu 22. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 4.
C. max |z| = 7.
D. max |z| = 3.
Câu 23. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 4.
C. r = 22.
D. r = 20.
Câu 24. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
.
B. P = 3.
C. P = 2.
D. P =
.
A. P =
2
2
Câu 25. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
4
2
1
1
A. √ .
C. √ .
D. .
B. √ .
2
13
2
5
√
Câu 26. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
1
3
3
A. ≤ |z| ≤ 2.
B. |z| < .
C. < |z| < .
D. |z| > 2.
2
2
2
2
Câu 27. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. π.
C. 3π.
D. 4π.
−2 − 3i
Câu 28. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
√ 3 − 2i
A. max |z| = 1.
B. max |z| = 3.
C. max |z| = 2.
D. max |z| = 2.
Câu 29. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 20.
C. r = 5.
D. r = 22.
Câu 30. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. −1.
B. 0.
C. 2.
D. 1.
Câu 31. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 4 và 3.
B. 5 và 4.
C. 5 và 3.
D. 10 và 4.
Trang 2/5 Mã đề 001
Câu 32. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 4 = 0.
C. x − y + 8 = 0.
D. x + y − 5 = 0.
Câu 33. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2
A. 18.
B. 8.
C. 9.
D. 4.
Câu 34. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.
√
√
√
B. 2 5.
C. 5.
D. 15.
A. 10.
Câu 35. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
3
1
A. |w|min = 2.
B. |w|min = .
C. |w|min = .
D. |w|min = 1.
2
2
Câu 36. (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 − z2 | = 2. Tìm giá
trị lớn nhất√của biểu thức P = |z1 | + |z2 |. √
√
√
A. P = 4 6.
B. P = 34 + 3 2.
C. P = 5 + 3 5.
D. P = 2 26.
2
1
Câu 37. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2
1
z1
z2
. Tính giá trị biểu thức P =