Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
√
Câu 1. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. −1 ≤ m ≤ 0.
B. 0 ≤ m ≤ 1.
C. m ≥ 1 hoặc m ≤ 0. D. m ≥ 0 hoặc m ≤ −1.
4(−3 + i) (3 − i)2
+
. Mô-đun của số phức w = z − iz + 1 là
Câu 2. Cho số phức z thỏa mãn z =
−i
√
√
√
√1 − 2i
A. |w| = 48.
B. |w| = 6 3.
C. |w| = 85.
D. |w| = 4 5.
Câu 3. Với mọi số phức z, ta có |z + 1|2 bằng
B. z · z + z + z + 1.
C. |z|2 + 2|z| + 1.
D. z2 + 2z + 1.
A. z + z + 1.
(1 + i)(2 + i) (1 − i)(2 − i)
Câu 4. Cho số phức z thỏa mãn z =
+
. Trong tất cả các kết luận sau, kết luận
1−i
1+i
nào đúng?
1
A. z = .
B. |z| = 4.
C. z là số thuần ảo.
D. z = z.
z
Câu 5. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. M(2; −3).
B. Q(−2; −3).
C. N(2; 3).
D. P(−2; 3).
Câu 6. Tìm số phức liên hợp của số phức z = i(3i + 1).
A. z = 3 + i.
B. z = −3 + i.
C. z = −3 − i.
D. z = 3 − i.
Câu 7. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (1; +∞).
B. (−∞; 1).
C. (−∞; 1].
D. [1; +∞).
Câu 8. Tích tất cả các nghiệm của phương trình ln2 x + 2 ln x − 3 = 0 bằng
B. −2.
C. −3.
D.
A. e13 .
1
.
e2
Câu 9. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng
√
√
√
√
A. 22 a3 .
B. 2a3 .
C. 62 a3 .
D. 42 a3 ..
Câu 10. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 90.
B. 48.
C. 49.
D. 89.
Câu R11. Cho hàm số f (x) = cos x + x. Khẳng định nàoR dưới đây đúng?
2
A. f (x)dx = − sin x + x2 + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Câu 12. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 4.
B. 2.
C. 5.
D. 3.
Câu 13. Căn bậc hai của -4 trong tập số phức là.
A. 2 hoặc -2.
B. 4i.
C. không tồn tại.
D. 2i hoặc -2i.
Câu 14. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 − i.
B. z = 3 + i.
C. z = −3 − i.
D. z = −3 + i.
Câu 15. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
3
1
1
3
A. − .
B. − .
C. .
D. .
2
2
2
2
Trang 1/5 Mã đề 001
Câu 16. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng √
bao nhiêu?
√
A. MN = 2 5.
B. MN = 5.
C. MN = 10.
D. MN = 10.
Câu 17. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M1 (6; 14).
B. M4 (6; −14).
C. M3 (−2; 10).
D. M2 (2; −10).
Câu 18. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
c
A. Phương trình đã cho có tích hai nghiệm bằng .
a
B. Phương trình đã cho ln có nghiệm.
−b
C. Phương trình đã cho có tổng hai nghiệm bằng
.
a
D. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
Câu 19. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 5.
C. r = 20.
D. r = 22.
Câu 20. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√độ dài của MN là
√
A. MN = 5.
B. MN = 2 5.
C. MN = 5.
D. MN = 4.
z
Câu 21. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác vuông.
Câu 22. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 4 = 0.
C. x + y − 5 = 0.
D. x − y + 8 = 0.
Câu 23. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9
9 9
1
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
1
4
A. .
B. √ .
C. √ .
D. √ .
2
13
5
2
−2 − 3i
Câu 24. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3
−
2i
√
A. max |z| = 3.
B. max |z| = 2.
C. max |z| = 1.
D. max |z| = 2.
Câu 25. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x + 1)2 + (y − 2)2 = 125.
C. x = 2.
D. (x − 5)2 + (y − 4)2 = 125.
Câu 26. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√độ dài của MN là
√
A. MN = 4.
B. MN = 2 5.
C. MN = 5.
D. MN = 5.
Câu 27. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
2
3
A. P =
.
B. P = 3.
C. P = 2.
D. P =
.
2
2
Trang 2/5 Mã đề 001
Câu 28. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 3π.
C. 2π.
D. 4π.
z
Câu 29. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác nhọn.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác đều.
Câu 30. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 4 = 0.
B. x + y − 5 = 0.
C. x − y + 8 = 0.
D. x + y − 8 = 0.
Câu 31. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
B. 5π.
C. .
D. 25π.
A. .
4
2
Câu 32. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. 1.
C. −1.
D. 2.
Câu 33. Cho z1 , z2 , z3 là các số phức thỏa mãn |z1 | = |z2 | = |z3 | = 1. Khẳng định nào sau đây đúng?
A. |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 |.
B. |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 |.
C. |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 |.
D. |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 |.
2
1
=
Câu 34. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
z1 z2
1
z1
z2
. Tính giá trị biểu thức P =