Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Phần thực của số phức z = 1 + (1 + i) + (1 + i) + · · · + (1 + i)
là
A. −21008 .
B. −22016 .
C. −21008 + 1.
D. 21008 .
2(1 + 2i)
Câu 2. Cho số phức z thỏa mãn (2 + i)z +
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
1+i
A. 3.
B. 4.
C. 5.
D. 13.
(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
Câu 3. Cho số phức z thỏa mãn z =
1−i
1+i
nào đúng?
1
A. z = z.
D. |z| = 4.
B. z là số thuần ảo.
C. z = .
z
2
Câu 4. Số phức z =
A. 1.
2016
(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
B. 2.
C. 21008 .
D. 0.
Câu 5.√Cho số phức z1 = 3 + 2i,
√ z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là √
A. 2 30.
B. 3 10.
C. 10 3.
D. 130.
Câu 6. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 3.
B. 7.
C. −7.
D. −3.
Câu 7. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+ x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
B. 12 .
C. 41 .
D. 43 .
A. 25 .
Câu 8. Có bao nhiêu số nguyên x thỏa mãn log3
A. 184.
B. 193.
x2 −16
343
< log7
C. 186.
x2 −16
?
27
D. 92.
Câu 9. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường trịn. Tâm của đường trịn đó có tọa độ là
A. (0; 2).
B. (−2; 0).
C. (2; 0).
D. (0; −2).
Câu 10. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (0; 1).
B. (1; 2).
C. (−1; 2).
D. (1; 0).
R 1
Câu 11. Cho x dx = F(x) + C. Khẳng định nào dưới đây đúng?
C. F ′ (x) = ln x.
D. F ′ (x) = − x12 .
A. F ′ (x) = x22 .
B. F ′ (x) = 1x .
Câu 12. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (1; 2).
B. (2; +∞).
C. (−∞; 1).
D. (1; +∞).
Câu 13. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T = .
B. T =
.
C. T = 9.
D. T = 3.
4
2
Câu 14. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?
√
√
A. P = 5.
B. P = 2 5.
C. P = 5.
D. P = 13.
Trang 1/5 Mã đề 001
Câu 15. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
−b
.
A. Phương trình đã cho có tổng hai nghiệm bằng
a
2
B. Nếu ∆ = b − 4ac < 0 thì phương trình đã vơ nghiệm.
C. Phương trình đã cho ln có nghiệm.
c
D. Phương trình đã cho có tích hai nghiệm bằng .
a
2
Câu 16. Biết z là số phức thỏa mãn z + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
A. |w| = 3.
B. |w| = 2 2.
C. |w| = 5.
D. |w| = 2.
Câu 17. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i bằng bao nhiêu ?
√
A. |w| = 5.
B. |w| = 73.
C. |w| = 5.
D. |w| = 3 5.
Câu 18. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và −4 + i.
B. 5 − 2i và −5 + 2i.
C. 4 − i và 2 + 3i.
D. 4 + i và −4 + i.
Câu 19. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. x = 2.
C. (x + 1)2 + (y − 2)2 = 125.
D. (x − 1)2 + (y − 4)2 = 125.
z+i+1
Câu 20. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường thẳng.
B. Một đường tròn.
C. Một Parabol.
D. Một Elip.
Câu 21. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Đường tròn.
C. Hai đường thẳng.
D. Parabol.
Câu 22. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 2 10.
B. max T = 3 5.
C. max T = 2 5.
D. max T = 3 2.
Câu 23. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√ độ dài của MN là
√
A. MN = 5.
B. MN = 5.
C. MN = 2 5.
D. MN = 4.
Câu 24. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ tam giác MNP đều
√ là số phức k là
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức. Để
B. w = 1 + √27 hoặcw = 1 − √27.
A. w = −√ 27 − i hoặcw =√− 27 + i.
C. w = 27 − i hoặcw = 27 + i.
D. w = 1 + 27i hoặcw = 1 − 27i.
Câu 25. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 2π.
B. 3π.
C. 4π.
D. π.
Câu 26. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x + y − 8 = 0.
C. x − y + 4 = 0.
D. x + y − 5 = 0.
√
Câu 27. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.
√
√
√
A. |z| = 50.
B. |z| = 10.
C. |z| = 5 2.
D. |z| = 33.
Câu 28. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
đều là số phức k là
√ x + iy trên mặt phẳng phức.√Để tam giác MNP √
A. w = 1√+ 27i hoặcw =√1 − 27i.
B. w = − 27
27 + i.
√ − i hoặcw = − √
C. w = 27 − i hoặcw = 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
Trang 2/5 Mã đề 001
Câu 29. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. π.
C. 3π.
D. 2π.
z
Câu 30. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác vuông.
D. Tam giác OAB là tam giác đều.
Câu 31. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên√mặt phẳng phức. Khi đó độ dài của MN là
√
B. MN = 4.
C. MN = 5.
D. MN = 5.
A. MN = 2 5.
Câu 32. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
2
3
B. P =
.
C. P =
.
D. P = 2.
A. P = 3.
2
2
Câu 33. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. Phần thực của z là số âm.
B. z là một số thực không dương.
C. |z| = 1.
D. z là số thuần ảo.
Câu 34. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.
√
√
√
B. 5.
C. 10.
D. 2 5.
A. 15.
√
Câu 35. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
3
1
1
3
A. |z| > 2.
B. ≤ |z| ≤ 2.
C. |z| < .
D. < |z| < .
2
2
2
2
4
Câu 36. Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu!diễn số phức thuộc tập hợp
nào
sau
đây?
!
!
!
1 9
9
1 5
1
A. 0; .
B. ; .
C. ; +∞ .
D. ; .
4
2 4
4
4 4
z+1
là số thuần ảo. Tìm |z| ?
z−1
1
B. |z| = 1.
C. |z| = .
2
Câu 37. Cho số phức z , 1 thỏa mãn
A. |z| = 4.
Câu 38. Cho số phức z thỏa mãn z không phải là số thực và ω =
biểu thức M = |z + 1 − i| là
A. 2.
B. 8.
C.
√
2.
D. |z| = 2.
z
là số thực. Giá trị lớn nhất của
2 + z2
√
D. 2 2.
Câu 39. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 6a3 .
B. V = 12a3 .
C. V = a3 .
D. V = 3a3 .
Câu 40. Cho hàm số y = f (x) liên tục trên R và lim y = 3. Trong các khẳng định sau, khẳng định nào
x→+∞
luôn đúng?
A. Đường thẳng y = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
B. Đường thẳng y = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
C. Đường thẳng x = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
D. Đường thẳng x = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
Câu 41. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
B. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
Trang 3/5 Mã đề 001
C. Hai khối chóp có thể tích bằng nhau thì bằng nhau.
D. Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
Câu 42. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
B. (0; +∞).
A. (−1; 0).
Câu 43. Cho hàm số y =
A. 3.
C. (−1; +∞).
D. (−∞; 0).
x+1
. Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
3−x
B. 2.
C. −1.
D. 0.
Câu 44. Hình đa diện dưới đây có bao nhiêu cạnh?
A. 15.
B. 18.
C. 12.
D. 21.
Câu 45. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 5.
B. 2.
C. 4.
D. 3.
Câu 46. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới đây đúng?
R
R
A. f (x)dx = − sin x + x2 + C.
B. f (x)dx = sin x + x2 + C.
R
R
2
2
C. f (x)dx = − sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Câu 47. Cho hàm số y = ax+b
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
cx+d
số đã cho và trục hoành là
A. (0; −2).
B. (0; 2).
C. (2; 0).
D. (−2; 0).
Câu 48. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 21 . Giá trị của u3 bằng
B. 12 .
A. 3.
Câu 49. Nếu
A. 1.
R4
−1
f (x)dx = 2 và
C. 41 .
R4
g(x)dx = 3 thì
−1
B. −1.
R4
−1
D. 72 .
[ f (x) + g(x)]dx bằng
C. 5.
D. 6.
Câu 50. Cho hình chóp S .ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 60◦ .
B. 90◦ .
C. 45◦ .
D. 30◦ .
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001