Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (609)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.14 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1.√Cho số phức z1 = 3 + 2i,
biểu thức |z1 + z1 z2 | là
√ z2 = 2 − i. Giá trị của √

B. 2 30.
C. 130.
D. 10 3.
A. 3 10.
Câu 2. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 + 2i.
B. 11 + 2i.
C. −3 − 2i.
D. −3 − 10i.
2(1 + 2i)
Câu 3. Cho số phức z thỏa mãn (2 + i)z +
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
1+i
A. 5.
B. 3.
C. 4.
D. 13.
Câu 4. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.


II. Mô-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 0.
B. 2.
C. 1.
D. 3.
25
1
1
Câu 5. Cho số phức z thỏa
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. 17.
B. 31.
C. −31.
D. −17.
2017
(1 + i)
có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 6. Số phức z =
21008 i
A. 2.
B. 21008 .
C. 1.
D. 0.
Câu 7. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao nhiêu

giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 1.
B. 4.
C. 2.
D. 3.






Câu 8. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của |z|. Giá trị của M 2 + m2√bằng
A. 28.
B. 18 + 4 6.


C. 11 + 4 6.

D. 14.

Câu 9. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
A. 16π
.
B. 16π
.
C. 16

.
D. 169 .
9
15
15
Câu 10. Cho hàm số y = ax+b
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
cx+d
số đã cho và trục hoành là
A. (0; 2).
B. (0; −2).
C. (−2; 0).
D. (2; 0).
Câu 11. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn






log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 90.

B. 49.

C. 48.

D. 89.

Câu 12. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng

biến trên khoảng nào dưới đây?
A. (1; 2).
B. (−∞; 1).
C. (2; +∞).
D. (1; +∞).
Câu 13. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √



A. |w| = 2.
B. |w| = 3.
C. |w| = 2 2.
D. |w| = 5.
Trang 1/5 Mã đề 001


Câu 14. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
7
3
7
3
A. − .
B. − .
C. .
D. .
4
4
4

4
Câu 15. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Phương trình đã cho ln có nghiệm.
−b
B. Phương trình đã cho có tổng hai nghiệm bằng
.
a
2
C. Nếu ∆ = b − 4ac < 0 thì phương trình đã vơ nghiệm.
c
D. Phương trình đã cho có tích hai nghiệm bằng .
a
Câu 16. Căn bậc hai của -4 trong tập số phức là.
A. 4i.
B. 2 hoặc -2.
C. 2i hoặc -2i.

D. không tồn tại.

Câu 17. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng bao nhiêu?


A. MN = 5.
B. MN = 10.
C. MN = 10.
D. MN = 2 5.
Câu 18. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng

A. 12.
B. 8.
C. −12.
D. −8.
Câu 19. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



A. max T = 2 10.
B. max T = 3 2.
C. max T = 2 5.
D. max T = 3 5.






−2 − 3i




Câu 20. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

z + 1



= 1.
3 − 2i

A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 3.
Câu 21. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 2π.
B. 3π.
C. π.
D. 4π.






z−z


=2?
Câu 22. Tìm tập hợp các điểm M biểu diễn số phức z sao cho

×