Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
2(1 + 2i)
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
Câu 1. Cho số phức z thỏa mãn (2 + i)z +
1+i
A. 4.
B. 5.
C. 3.
D. 13.
2
4(−3 + i) (3 − i)
Câu 2. Cho số phức z thỏa mãn z =
+
. Mô-đun của số phức w = z − iz + 1 là
−i
√1 − 2i
√
√
√
A. |w| = 48.
B. |w| = 4 5.
C. |w| = 85.
D. |w| = 6 3.
4 − 2i (1 − i)(2 + i)
Câu 3. Phần thực của số phức z =
+
là
2−i
2 + 3i
29
29
11
11
B.
.
C. − .
D. .
A. − .
13
13
13
13
2017
(1 + i)
Câu 4. Số phức z =
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
A. 2.
B. 1.
C. 0.
D. 21008 .
Câu 5. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 4.
B. 2.
C. 3.
D. 1.
Câu 6. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z + z = 2bi.
B. z · z = a2 − b2 .
C. z − z = 2a.
D. |z2 | = |z|2 .
Câu 7. Cho hàm số f (x) liên tục trên R. Gọi
R 2F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
A. 32 .
B. 6.
C. 3.
D. 43 .
Câu 8. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
A. 8.
B. 6.
C. 4.
D. 83 .
Câu 9. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường tròn. Tâm của đường trịn đó có tọa độ là
A. (−2; 0).
B. (2; 0).
C. (0; 2).
D. (0; −2).
Câu 10. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =
x3 + (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
A. 12.
B. 5.
C. 11.
i
R2
R 2 h1
Câu 11. Nếu 0 f (x)dx = 4 thì 0 2 f (x) − 2 dx bằng
A. 8.
B. −2.
C. 6.
Câu 12. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = x ln1 3 .
B. y′ = 1x .
C. y′ = − x ln1 3 .
D. 6.
D. 0.
D. y′ =
ln 3
.
x
Câu 13. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
3
1
1
3
A. − .
B. .
C. − .
D. .
2
2
2
2
2
Câu 14. Tìm tất cả các giá trị thực của tham số m để phương trình mz + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
C. m < 0 hoặc m > . D. 0 < m < .
A. m ≥ 0.
B. 0 ≤ m < .
4
4
4
Trang 1/5 Mã đề 001
Câu 15. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 + i.
B. z = −3 + i.
C. z = 3 − i.
D. z = −3 − i.
Câu 16. Cho phương trình bậc hai az + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Phương trình đã cho ln có nghiệm.
B. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
c
C. Phương trình đã cho có tích hai nghiệm bằng .
a
−b
D. Phương trình đã cho có tổng hai nghiệm bằng
.
a
Câu 17. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (1 + 4i)z − 9 + 7i = 0.
B. z2 − (5 − 2i)z + 9 − 7i = 0.
C. z2 + (5 − 2i)z − 9 + 7i = 0.
D. z2 − (1 + 4i)z + 9 − 7i = 0.
2
Câu 18. Căn bậc hai của -4 trong tập số phức là.
A. không tồn tại.
B. 2i hoặc -2i.
C. 4i.
D. 2 hoặc -2.
z+i+1
là số thuần ảo?
z + z + 2i
C. Một đường tròn.
D. Một đường thẳng.
Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một Parabol.
B. Một Elip.
Câu 20. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 4 và 3.
B. 10 và 4.
C. 5 và 4.
D. 5 và 3.
Câu 21. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. .
B.
.
C. 5π.
D. 25π.
4
2
Câu 22. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x − 5)2 + (y − 4)2 = 125.
C. (x + 1)2 + (y − 2)2 = 125.
D. x = 2.
√
Câu 23. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
A. |z| > 2.
B. ≤ |z| ≤ 2.
C. < |z| < .
D. |z| < .
2
2
2
2
Câu 24. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. 3π.
C. 2π.
D. π.
z−z
=2?
Câu 25. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường tròn.
B. Một Parabol.
C. Một đường thẳng.
D. Một Elip.
Câu 26. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 4π.
C. 3π.
D. 2π.
Câu 27. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x + 1)2 + (y − 2)2 = 125.
C. (x − 5)2 + (y − 4)2 = 125.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 28. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
B. w = 1 + √27 hoặcw = 1 − √27.
A. w = −√ 27 − i hoặcw =√− 27 + i.
C. w = 27 − i hoặcw = 27 + i.
D. w = 1 + 27i hoặcw = 1 − 27i.
Trang 2/5 Mã đề 001
Câu 29. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9
9 9
1
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
4
1
2
A. √ .
B. √ .
C. .
D. √ .
2
13
2
5
z−z
=2?
Câu 30. Tìm tập hợp các điểm M biểu diễn số phức z sao cho