Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Tính
√ mô-đun của số phức z thỏa mãn z(2 − i) + 13i = √1.
√
5 34
34
C. |z| =
A. |z| =
.
B. |z| = 34.
.
D. |z| = 34.
3
3
4 − 2i (1 − i)(2 + i)
+
là
Câu 2. Phần thực của số phức z =
2−i
2 + 3i
11
29
11
29
A. .
B.
.
C. − .
D. − .
13
13
13
13
Câu 3. Cho hai√số phức z1 = 1 + i và z2 = 2 − 3i. Tính mơ-đun của
số
phức
z
+
z
1
2.
√
A. |z1 + z2 | = 13.
B. |z1 + z2 | = 1.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 5.
Câu 4. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mô-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 1.
B. 3.
C. 2.
D. 0.
25
1
1
Câu 5. Cho số phức z thỏa
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. −31.
B. −17.
C. 31.
D. 17.
√
Câu 6. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. 0 ≤ m ≤ 1.
B. m ≥ 1 hoặc m ≤ 0. C. −1 ≤ m ≤ 0.
D. m ≥ 0 hoặc m ≤ −1.
Câu 7. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của√ |z|. Giá trị của M 2 + m2 bằng
B. 28.
A. 18 + 4 6.
√
C. 11 + 4 6.
D. 14.
Câu R8. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới
đây đúng?
R
2
2
A. f (x)dx = − sin x + x + C.
B. f (x)dx = sin x + x2 + C.
R
R
2
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = − sin x + x2 + C.
Câu 9. Phần ảo của số phức z = 2 − 3i là
A. 2.
B. −3.
C. 3.
D. −2.
Câu 10. Trong không gian 0xyz, cho mặt cầu (S ) : x + y + z − 2x − 4y − 6z + 1 = 0. Tâm của (S ) có
tọa độ là
A. (−1; −2; −3).
B. (1; 2; 3).
C. (−2; −4; −6).
D. (2; 4; 6).
2
2
2
Câu 11. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường tròn. Tâm của đường trịn đó có tọa độ là
A. (−2; 0).
B. (0; 2).
C. (2; 0).
D. (0; −2).
Câu 12. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt phẳng (S CD) bằng √
√
√
√
A. 2a.
B. 22 a.
C. 33 a.
D. 2 3 3 a.
Câu 13. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?
√
√
A. |w| = 37.
B. |w| = 5.
C. |w| = 5 13.
D. |w| = 13.
Câu 14. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z√2 | + |z3 | + |z4 |.
√
√
A. T = 2 3.
B. T = 2 + 2 3.
C. T = 4.
D. T = 4 + 2 3.
Trang 1/5 Mã đề 001
Câu 15. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
3
1
3
1
A. .
B. .
C. − .
D. − .
2
2
2
2
2
Câu 16. Biết z = 1 + 2i là một nghiệm phức của phương trình z + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
7
7
3
3
B. − .
C. .
D. − .
A. .
4
4
4
4
2
Câu 17. Tìm tất cả các giá trị thực của tham số m để phương trình mz + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
C. 0 ≤ m < .
D. m < 0 hoặc m > .
A. m ≥ 0.
B. 0 < m < .
4
4
4
3
2
Câu 18. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z −z +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?
√
√
B. P = 5.
C. P = 13.
D. P = 5.
A. P = 2 5.
z−z
=2?
Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường tròn.
B. Một đường thẳng.
C. Một Elip.
D. Một Parabol.
Câu 20. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó độ dài của MN là
√
√
A. MN = 5.
B. MN = 4.
C. MN = 5.
D. MN = 2 5.
Câu 21. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
3
2
A. P = 3.
B. P =
.
C. P =
.
D. P = 2.
2
2
Câu 22. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 10 và 4.
B. 5 và 4.
C. 5 và 3.
D. 4 và 3.
z+i+1
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường tròn.
B. Một Parabol.
C. Một đường thẳng.
D. Một Elip.
Câu 24. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 25π.
B.
.
C. .
D. 5π.
2
4
Câu 25. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 8 = 0.
C. x − y + 4 = 0.
D. x + y − 5 = 0.
√
Câu 26. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.
√
√
√
A. |z| = 50.
B. |z| = 33.
C. |z| = 5 2.
D. |z| = 10.
√
Câu 27. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 6.
C. max |z| = 3.
D. max |z| = 7.
Câu 28. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. (x − 1)2 + (y − 4)2 = 125.
C. (x − 5)2 + (y − 4)2 = 125.
D. x = 2.
Câu 29. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. 2π.
C. 3π.
D. π.
Trang 2/5 Mã đề 001
−2 − 3i
Câu 30. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện