Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = −21009 . B. (1 + i)2018 = 21009 .
C. (1 + i)2018 = 21009 i.
D. (1 + i)2018 = −21009 i.
(1 + i)(2 − i)
Câu 2. Mô-đun của số phức z =
là
1 + 3i
√
A. |z| = 5.
B. |z| = 5.
D. |z| = 1.
C. |z| =
√
2.
Câu 3.
√ Cho số phức z1 = 3 + 2i,√z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là
√
A. 130.
B. 10 3.
C. 3 10.
D. 2 30.
(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
1008
A. 2 .
B. 2.
C. 1.
D. 0.
(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
Câu 5. Cho số phức z thỏa mãn z =
1−i
1+i
nào đúng?
1
A. z là số thuần ảo.
B. z = z.
C. |z| = 4.
D. z = .
z
Câu 4. Số phức z =
Câu 6. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z · z = a2 − b2 .
B. |z2 | = |z|2 .
C. z + z = 2bi.
D. z − z = 2a.
Câu 7. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 2.
B. 3.
C. −1.
D. 0.
Câu 8. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 48.
B. 89.
C. 49.
D. 90.
Câu 9. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng
√
√
√
√
A. 2a3 .
B. 22 a3 .
C. 62 a3 .
D. 42 a3 ..
Câu 10. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (1; 2; −3).
B. (−1; −2; −3).
C. (−1; 2; 3).
D. (1; −2; 3).
Câu 11. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = 1x .
B. y′ = − x ln1 3 .
C. y′ = lnx3 .
i
R2h
R2
Câu 12. Nếu 0 f (x)dx = 4 thì 0 21 f (x) − 2 dx bằng
A. −2.
B. 6.
C. 0.
D. y′ =
1
.
x ln 3
D. 8.
Câu 13. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M3 (−2; 10).
B. M1 (6; 14).
C. M2 (2; −10).
D. M4 (6; −14).
Trang 1/5 Mã đề 001
Câu 14. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 0.
B. −2.
C. 1.
D. 2.
Câu 15. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
A. |w| = 2.
B. |w| = 2 2.
C. |w| = 5.
D. |w| = 3.
Câu 16. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −12.
B. 8.
C. −8.
D. 12.
Câu 17. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = −3 − i.
B. z = 3 + i.
C. z = 3 − i.
D. z = −3 + i.
Câu 18. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?
√
√
A. |w| = 13.
B. |w| = 5.
C. |w| = 5 13.
D. |w| = 37.
Câu 19. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
1+i
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
15
25
25
B. S = .
C. S = .
D. S = .
A. S = .
4
2
4
2
√
2
2
Câu 20. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2| − |z − i| đạt giá trị lớn nhất.
Tính |z|.
√
√
√
A. |z| = 50.
B. |z| = 33.
C. |z| = 10.
D. |z| = 5 2.
−2 − 3i
z + 1
= 1.
Câu 21. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
3 − 2i
√
C. max |z| = 2.
D. max |z| = 1.
A. max |z| = 3.
B. max |z| = 2.
Câu 22. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. 1.
C. −1.
D. 2.
Câu 23. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. (x − 1)2 + (y − 4)2 = 125.
2
2
C. (x + 1) + (y − 2) = 125.
D. x = 2.
z+i+1
là số thuần ảo?
z + z + 2i
A. Một đường thẳng.
B. Một Parabol.
C. Một Elip.
D. Một đường tròn.
z−z
=2?
Câu 25. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường tròn.
B. Một Elip.
C. Một Parabol.
D. Một đường thẳng.
Câu 24. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z+i+1
là số thuần ảo?
z + z + 2i
C. Một đường thẳng.
D. Một Elip.
Câu 26. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một Parabol.
B. Một đường tròn.
Câu 27. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9
1
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
4
1
A. .
B. √ .
C. √ .
D. √ .
2
13
2
5
Trang 2/5 Mã đề 001
Câu 28. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 10 và 4.
B. 5 và 3.
C. 4 và 3.
D. 5 và 4.
√
Câu 29. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 4.
C. max |z| = 6.
D. max |z| = 7.
z
Câu 30. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
B. Tam giác OAB là tam giác cân.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác nhọn.
Câu 31. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. (x + 1)2 + (y − 2)2 = 125.
C. x = 2.
D. (x − 1)2 + (y − 4)2 = 125.
√
Câu 32. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.
√
√
√
C. |z| = 10.
D. |z| = 5 2.
A. |z| = 50.
B. |z| = 33.
Câu 33. Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = 1 và z1 +z2 +z3 = 0. Tính A = z21 +z22 +z23 .
A. A = 0.
B. A = 1.
C. A = 1 + i.
D. A = −1.
Câu 34. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2
A. 9.
B. 18.
C. 4.
D. 8.
Câu 35. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
3
1
A. |w|min = 2.
B. |w|min = .
C. |w|min = 1.
D. |w|min = .
2
2
z
Câu 36. Cho số phức z , 0 sao cho z không phải là số thực và w =
là số thực. Tính giá trị biểu
1 + z2
|z|
bằng?
thức
1 + |z|2
√
1
2
1
A. 2.
B. .
C.
.
D. .
5
3
2
Câu 37. Cho z1 , z2 , z3 là các số phức thỏa mãn |z1 | = |z2 | = |z3 | = 1. Khẳng định nào sau đây đúng?
A. |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 |.
B. |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 |.
C. |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 |.
D. |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 |.
Câu 38. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
Tính giá trị của biểu thức P = z2017
+ z2017
+ · · · + z2017
1
2
2015 + z2016
A. P = −2016.
B. P = 1.
C. P = 0.
D. P = 2016.
x+1
. Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
Câu 39. Cho hàm số y =
3−x
A. 3.
B. 2.
C. 0.
D. −1.
Câu 40. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vuông cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 6a3 .
B. V = 3a3 .
C. V = 12a3 .
D. V = a3 .
Câu 41. Cho hàm số y = f (x) có bảng biến thiên như sau:
x
−∞
y′
+∞
−2
−
−
+∞
−2
y
−∞
−2
Trang 3/5 Mã đề 001
Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 3.
B. 1.
C. 4.
D. 2.
Câu 42. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (−∞; 0).
B. (−1; 0).
C. (0; +∞).
D. (−1; +∞).
Câu 43. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
A. y = −x2 + 3x + 5.
B. y = x4 − 2x2 + 1.
C. y =
x−3
.
5−x
D. y = −x3 − 2x + 3.
Câu 44. Cho hàm số y = f (x) liên tục trên R và lim y = 3. Trong các khẳng định sau, khẳng định nào
x→+∞
luôn đúng?
A. Đường thẳng y = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
B. Đường thẳng y = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
C. Đường thẳng x = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
D. Đường thẳng x = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
Câu 45. Tiệm cận ngang của đồ thị hàm số y =
A. y = 32 .
B. y = 13 .
2x+1
3x−1
là đường thẳng có phương trình:
C. y = − 31 .
D. y = − 23 .