Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (714)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.14 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là3 và phần ảo là 2.
B. Phần thực là −3 và phần ảo là−2.
C. Phần thực là−3 và phần ảo là −2i.
D. Phần thực là 3 và phần ảo là 2i.
Câu 2. Cho hai số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .

A. |z1 + z2 | = 5.
B. |z1 + z2 | = 5.
C. |z1 + z2 | = 1.
D. |z1 + z2 | = 13.
4 + 2i + i2017
có tổng phần thực và phần ảo là
2−i
B. -1.
C. 2.
D. 1.
2017
(1 + i)
Câu 4. Số phức z =
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i


A. 2.
B. 1.
C. 21008 .
D. 0.
Câu 3. Số phức z =
A. 3.

Câu 5. Cho số phức z thỏa mãn z(1 + 3i) = 17 + i. Khi đó
√ mơ-đun của số phức w
√ = 6z − 25i là
A. 5.
B. 13.
C. 2 5.
D. 29.
Câu 6. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 i. B. (1 + i)2018 = −21009 . C. (1 + i)2018 = 21009 .

D. (1 + i)2018 = −21009 i.

Câu 7. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A. y = x4 − 3x2 + 2.
B. y = x3 − 3x − 5.
C. y = x2 − 4x + 1.
D. y =

x−3
.
x−1

Câu 8. Cho hàm số f (x) liên tục trên R. Gọi

R 2F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
C. 43 .
D. 3.
A. 6.
B. 23 .
Câu 9. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A. ln 23 .

B. ln 23 .

C. ln a.

 
D. ln 6a2 .

Câu 10. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 0.
B. −1.
C. 3.
D. 2.
= y−1
=
Câu 11. Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−2
2
2
phẳng đi qua A và chứa d. Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 5.
B. 1.

C. 13 .
D. 113 .

z−1
.
−3

Gọi (P) là mặt

Câu 12. Trong khơng gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 60◦ .
B. 90◦ .
C. 45◦ .
D. 30◦ .
Câu 13. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. -1.
B. 1.
C. 2.
D. -3.
Câu 14. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (1 + 4i)z − 9 + 7i = 0.
B. z2 − (1 + 4i)z + 9 − 7i = 0.
C. z2 + (5 − 2i)z − 9 + 7i = 0.
D. z2 − (5 − 2i)z + 9 − 7i = 0.
Câu 15. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?

A. P = 5.

B. P = 13.
C. P = 2 5.
D. P = 5.
Trang 1/5 Mã đề 001


Câu 16. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z√2 | + |z3 | + |z4 |.


B. T = 4 + 2 3.
C. T = 4.
D. T = 2 + 2 3.
A. T = 2 3.
Câu 17. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √



B. |w| = 2 2.
C. |w| = 2.
D. |w| = 5.
A. |w| = 3.
Câu 18. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?√

A. |w| = 13.
B. |w| = 5 13.

C. |w| = 37.
D. |w| = 5.
Câu 19. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
đều là số phức k là
√ x + iy trên mặt phẳng phức.√Để tam giác MNP √
B. w = −√ 27 − i hoặcw =√− 27 + i.
A. w = 1 + √27i hoặcw = 1 − √ 27i.
C. w = 1 + 27 hoặcw = 1 − 27.
D. w = 27 − i hoặcw = 27 + i.
Câu 20. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
4
1
2
B. √ .
C. √ .
D. .
A. √ .
2
13

5
2
Câu 21. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 4π.
B. π.
C. 2π.
D. 3π.

Câu 22. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
1
3
3
B. |z| > 2.
C. < |z| < .
D. ≤ |z| ≤ 2.
A. |z| < .
2
2
2
2

2
Câu 23. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2| − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.




C. |z| = 5 2.
D. |z| = 33.
A. |z| = 50.
B. |z| = 10.
Câu 24. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Đường trịn.
C. Parabol.
D. Một đường thẳng.
z+i+1
Câu 25. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một đường thẳng.
C. Một đường tròn.
D. Một Parabol.

Câu 26. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


A. |z| = 5 2.
B. |z| = 10.
C. |z| = 33.
D. |z| = 50.

Câu 27. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 6.

C. max |z| = 4.
D. max |z| = 7.
z+i+1
Câu 28. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường thẳng.
B. Một Parabol.
C. Một đường tròn.
D. Một Elip.
Câu 29. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Một đường thẳng.
C. Parabol.
D. Hai đường thẳng.
Câu 30. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 2π.
C. 4π.
D. 3π.
Trang 2/5 Mã đề 001









−2 − 3i


Câu 31. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1


= 1.
3 − 2i

A. max |z| = 2.
B. max |z| = 1.
C. max |z| = 3.
D. max |z| = 2.
Câu 32. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 3π.
C. 4π.
D. π.
Câu 33. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. 22016 .
B. −21008 .
C. −22016 .
D. 21008 .

1

3
i. Giá trị của (a + bz + cz2 )(a + bz2 + cz) bằng
Câu 34. Cho a, b, c là các số thực và z = − +
2
2
A. a2 + b2 + c2 + ab + bc + ca.
B. 0.
C. a + b + c.
D. a2 + b2 + c2 − ab − bc − ca.
z+1
Câu 35. Cho số phức z , 1 thỏa mãn
là số thuần ảo. Tìm |z| ?
z−1
1
A. |z| = 2.
B. |z| = .
C. |z| = 4.
D. |z| = 1.
2
2
1
Câu 36. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2










1
z1
z2
. Tính giá trị biểu thức P =




×