Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (719)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.96 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Với mọi số phức z, ta có |z + 1|2 bằng
B. z2 + 2z + 1.
A. z + z + 1.

C. z · z + z + z + 1.

D. |z|2 + 2|z| + 1.

Câu 2. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 1.
B. 2.
C. 3.
D. 0.
Câu 3. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. 21008 .
B. −21008 .
C. −22016 .
D. −21008 + 1.
Câu 4. Đẳng thức nào đúng trong các đẳng thức sau?


A. (1 + i)2018 = −21009 i. B. (1 + i)2018 = −21009 . C. (1 + i)2018 = 21009 i.

D. (1 + i)2018 = 21009 .

Câu 5. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. 0 và 1.
B. C.Truehỉ có số 0.
C. Chỉ có số 1.
!2016
!2018
1−i
1+i
+
bằng
Câu 6. Số phức z =
1−i
1+i
A. −2.
B. 2.
C. 1 + i.

D. 0.

Câu 7. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (12; +∞).
B. (3; +∞).
C. (2; 3).

D. (−∞; 3).


D. Khơng có số nào.

Câu 8. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:




A. →
n4 = (1; 1; −1).
B. →
n1 = (−1; 1; 1).
C. →
n3 = (1; 1; 1).
D. →
n2 = (1; −1; 1).
i
R2
R 2 h1
Câu 9. Nếu 0 f (x)dx = 4 thì 0 2 f (x) − 2 dx bằng
A. 8.
B. 0.
C. −2.
D. 6.
Câu 10. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (−6; 7).
B. (6; 7).
C. (7; 6).
D. (7; −6).







Câu 11. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của |z|. Giá trị của M 2 + m2√bằng
A. 14.
B. 18 + 4 6.


C. 11 + 4 6.

Câu 12. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = − x ln1 3 .
B. y′ = 1x .
C. y′ = lnx3 .

D. 28.
D. y′ =

1
.
x ln 3

Câu 13. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 0.
B. −2.

C. 2.
D. 1.
Câu 14. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?

13
13
A. T =
.
B. T = .
C. T = 3.
D. T = 9.
2
4
Câu 15. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √



A. |w| = 5.
B. |w| = 2.
C. |w| = 2 2.
D. |w| = 3.
Trang 1/5 Mã đề 001


Câu 16. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và −4 + i.
B. 5 − 2i và −5 + 2i.
C. 4 − i và 2 + 3i.


D. 4 + i và −4 + i.

Câu 17. Biết z0 là nghiệm phức có phần ảo dương của phương trình z − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M2 (2; −10).
B. M4 (6; −14).
C. M1 (6; 14).
D. M3 (−2; 10).
2

Câu 18. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
−b
.
B. Phương trình đã cho có tổng hai nghiệm bằng
a
C. Phương trình đã cho ln có nghiệm.
c
D. Phương trình đã cho có tích hai nghiệm bằng .
a
Câu 19. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. 1.
C. 2.
D. −1.
Câu 20. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu

thức T = |z + 1| √
+ 2|z − 1|.



B. max T = 3 2.
C. max T = 2 10.
D. max T = 2 5.
A. max T = 3 5.
Câu 21. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
A. w = 1 +
27
hoặcw
=
1

27.
B.
w
=
1
+
27i
hoặcw
=
1


27i.




D. w = 27 − i hoặcw = 27 + i.
C. w = − 27 − i hoặcw = − 27 + i.
Câu 22. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


.
C. .
D. 5π.
A. 25π.
B.
2
4
Câu 23. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x − 5)2 + (y − 4)2 = 125.
2
2
C. (x + 1) + (y − 2) = 125.
D. x = 2.
1+i
z
Câu 24. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =

2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
15
A. S = .
B. S = .
C. S = .
D. S = .
2
4
4
2
2
Câu 25. Gọi z1 và z2 là các nghiệm của phương trình z − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên
√ mặt phẳng phức. Khi đó độ dài của MN là

B. MN = 5.
C. MN = 4.
D. MN = 2 5.
A. MN = 5.






−2 − 3i



Câu 26. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1


= 1.
3

2i

A. max |z| = 2.
B. max |z| = 3.
C. max |z| = 2.
D. max |z| = 1.
1+i
Câu 27. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
15
25
A. S = .
B. S = .
C. S = .
D. S = .

2
2
4
4
2
Câu 28. Gọi z1 và z2 là các nghiệm của phương trình z − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên√mặt phẳng phức. Khi đó√ độ dài của MN là
A. MN = 2 5.
B. MN = 5.
C. MN = 4.
D. MN = 5.
Trang 2/5 Mã đề 001


z+i+1
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một Parabol.
C. Một đường tròn.
D. Một đường thẳng.






z−z



=2?
Câu 30. Tìm tập hợp các điểm M biểu diễn số phức z sao cho

×