Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Số phức z =
A. 21008 .
(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
B. 1.
C. 0.
D. 2.
Câu 2. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. P(−2; 3).
B. N(2; 3).
C. M(2; −3).
D. Q(−2; −3).
4 − 2i (1 − i)(2 + i)
+
là
Câu 3. Phần thực của số phức z =
2−i
2 + 3i
29
11
29
11
A. .
B. − .
C. − .
D. .
13
13
13
13
√
Câu 4. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. m ≥ 1 hoặc m ≤ 0. B. −1 ≤ m ≤ 0.
C. m ≥ 0 hoặc m ≤ −1. D. 0 ≤ m ≤ 1.
Câu 5. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 2.
B. 0.
C. 3.
D. 1.
(1 + i)(2 − i)
Câu 6. Mô-đun của số phức z =
là
1 + 3i
√
√
A. |z| = 2.
B. |z| = 5.
C. |z| = 5.
D. |z| = 1.
Câu 7. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 89.
B. 49.
C. 48.
D. 90.
Câu 8. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
B. 18
.
C. 354 .
D. 71 .
A. 359 .
35
Câu 9. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. −77.
B. 4.
C. 36.
D. 85.
Câu 10. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = − x ln1 3 .
B. y′ = 1x .
C. y′ = x ln1 3 .
D. y′ =
ln 3
.
x
Câu 11. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 12. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (−1; −2; −3).
B. (1; −2; 3).
C. (1; 2; −3).
D. (−1; 2; 3).
Câu 13. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?.
√
√
√
√
A. |w| = 2 2.
B. |w| = 3.
C. |w| = 2.
D. |w| = 5.
Trang 1/5 Mã đề 001
Câu 14. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của √
số phức w = m2 − 3m + i bằng bao nhiêu ?
√
A. |w| = 5.
B. |w| = 3 5.
C. |w| = 5.
D. |w| = 73.
Câu 15. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
7
3
A. − .
B. − .
C. .
D. .
4
4
4
4
2
Câu 16. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T =
.
B. T = 9.
C. T = 3.
D. T = .
2
4
4
2
Câu 17. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z − z − 12 = 0. Tính tổng
T = |z1 | + |z2 | +√|z3 | + |z4 |.
√
√
B. T = 4.
C. T = 2 3.
D. T = 2 + 2 3.
A. T = 4 + 2 3.
Câu 18. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
B. Phương trình đã cho ln có nghiệm.
c
C. Phương trình đã cho có tích hai nghiệm bằng .
a
−b
D. Phương trình đã cho có tổng hai nghiệm bằng
.
a
√
Câu 19. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 7.
B. max |z| = 3.
C. max |z| = 4.
D. max |z| = 6.
Câu 20. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 10 và 4.
B. 5 và 4.
C. 4 và 3.
D. 5 và 3.
Câu 21. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
đều là số phức k là
√ z1 , z2 và số phức
√ w = x + iy trên mặt phẳng phức.√Để tam giác MNP √
A. w = 27√− i hoặcw = 27 +√i.
B. w = − 27
27 + i.
√ − i hoặcw = − √
C. w = 1 + 27i hoặcw = 1 − 27i.
D. w = 1 + 27 hoặcw = 1 − 27.
Câu 22. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9
9 9
1
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
4
1
2
A. √ .
B. √ .
C. .
D. √ .
2
13
2
5
−2 − 3i
Câu 23. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3
−
2i
√
A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 3.
Câu 24. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 5.
C. r = 22.
D. r = 20.
Câu 25. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. 3π.
C. π.
D. 2π.
−2 − 3i
Câu 26. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 3.
D. max |z| = 2.
Trang 2/5 Mã đề 001
Câu 27. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
25
B. S = .
C. S = .
A. S = .
4
2
2
D. S =
1+i
z
2
15
.
4
√
Câu 28. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 6.
C. max |z| = 7.
D. max |z| = 4.
z+i+1
là số thuần ảo?
z + z + 2i
C. Một đường thẳng.
D. Một Elip.
Câu 29. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một Parabol.
B. Một đường tròn.
Câu 30. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9 9
1
9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
4
1
2
1
A. √ .
B. .
C. √ .
D. √ .
2
13
5
2
Câu 31. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
2
3
B. P =
.
C. P =
.
D. P = 3.
A. P = 2.
2
2
Câu 32. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 3 5.
B. max T = 3 2.
C. max T = 2 10.
D. max T = 2 5.
Câu 33. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
1
3
B. |w|min = .
C. |w|min = 1.
D. |w|min = 2.
A. |w|min = .
2
2
√
Câu 34. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
3
1
1
3
A. ≤ |z| ≤ 2.
B. |z| < .
C. |z| > 2.
D. < |z| < .
2
2
2
2
Câu 35. Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
A. P = 2016.
B. max T = 2 5.
C. P = 1.
D. P = −2016.
√
1
3
Câu 36. Cho a, b, c là các số thực và z = − +
i. Giá trị của (a + bz + cz2 )(a + bz2 + cz) bằng
2
2
A. 0.
B. a + b + c.
2
2
2
C. a + b + c + ab + bc + ca.
D. a2 + b2 + c2 − ab − bc − ca.
Câu 37. (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z|.
Đặt P = 8(b2 − a2 ) − 12. Mệnh đề nào dưới đây đúng?
2
2
A. P = (|z| − 2)2 .
B. P = (|z| − 4)2 .
C. P = |z|2 − 4 .
D. P = |z|2 − 2 .
Câu 38. Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn
Khi đó mệnh đề nào sau đây đúng?
1
3
3
A. < |z| < .
B. < |z| < 2.
2
2
2
5
C. 2 < |z| < .
2
D.
1 + z + z2
là số thực.
1 − z + z2
5
7
< |z| < .
2
2
Câu 39. Trong các hình dưới đây, có bao nhiêu hình đa diện?
Trang 3/5 Mã đề 001
Hình 1
A. 0.
Hình 3
Hình 2
B. 3.
C. 1.
D. 2.
Câu 40. Cho hàm số y = f (x) có bảng biến thiên như sau:
x
−∞
y′
+∞
−2
−
−
+∞
−2
y
−2
−∞
Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 3.
B. 1.
C. 4.
D. 2.
Câu 41. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. x = 1.
B. (1; 2).
C. x = 0.
D. (0; 3).
Câu 42. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x
−∞
+∞
1
+
y′
+
+∞
2
y
2
−∞
2x + 1
2x − 1
2x − 3
2x + 3
.
B. y =
.
C. y =
.
D. y =
.
x−1
x+1
x−1
x−1
Câu 43. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối mười hai mặt đều.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện đều.
A. y =
Câu 44. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Giá trị cực tiểu của hàm số là 3.
B. Hàm số có hai điểm cực trị.
C. Hàm số có một điểm cực đại và một điểm cực tiểu.
D. Giá trị cực đại của hàm số là 0.
Câu 45. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 46. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (−1; 2).
B. (1; 0).
C. (0; 1).
D. (1; 2).
Câu 47. Tích tất cả các nghiệm của phương trình ln2 x + 2 ln x − 3 = 0 bằng
A. −3.
B. e13 .
C. −2.
D.
Câu 48. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = πxπ .
B. y′ = π1 xπ−1 .
C. y′ = xπ−1 .
1
.
e2
D. y′ = πxπ−1 .
Trang 4/5 Mã đề 001
Câu 49. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 21 . Giá trị của u3 bằng
B. 12 .
A. 3.
Câu 50. Cho
R
1
x
A. F ′ (x) = ln x.
C. 27 .
D. 14 .
dx = F(x) + C. Khẳng định nào dưới đây đúng?
B. F ′ (x) =
2
.
x2
C. F ′ (x) = − x12 .
D. F ′ (x) = 1x .
Trang 5/5 Mã đề 001