Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (731)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (119.85 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. Q(−2; −3).
B. P(−2; 3).
C. N(2; 3).
D. M(2; −3).
Câu 2. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. 11 + 2i.
B. −3 − 10i.
C. −3 − 2i.

D. −3 + 2i.

Câu 3. Với mọi số phức z, ta có |z + 1|2 bằng
A. |z|2 + 2|z| + 1.
B. z2 + 2z + 1.

C. z + z + 1.

D. z · z + z + z + 1.

Câu 4. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số phức.
C. Mô-đun của số phức z là số thực không âm.



B. Mô-đun của số phức z là số thực dương.
D. Mô-đun của số phức z là số thực.

Câu 5. Cho P = 1 + i + i2 + i3 + · · · + i2017 . Đâu là phương án chính xác?
A. P = 1 + i.
B. P = 0.
C. P = 2i.

D. P = 1.

Câu 6. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2k.
B. A = 0.
C. A = 1.
D. A = 2ki.
Câu 7. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 2.
B. 0.
C. 3.
D. −1.
Câu 8. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng
A. 30.
B. 225.
C. 210.
D. 105.
Câu 9. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn







log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 89.

B. 48.

C. 90.

D. 49.

Câu 10. Tích tất cả các nghiệm của phương trình ln2 x + 2 ln x − 3 = 0 bằng
A. e13 .
B. −3.
C. −2.
D.

1
.
e2

có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
Câu 11. Cho hàm số y = ax+b
cx+d
số đã cho và trục hoành là
A. (0; −2).
B. (−2; 0).
C. (0; 2).

D. (2; 0).
Câu 12. Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6). Xét các điểm M thay đổi sao
cho tam giác OAM khơng có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB
thuộc khoảng nào dưới đây?
A. (3; 4).
B. (4; 5).
C. (6; 7).
D. (2; 3).
Câu 13. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 8.
B. −12.
C. 12.
D. −8.
Câu 14. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 1.
B. −2.
C. 0.
D. 2.
Trang 1/5 Mã đề 001


Câu 15. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?

13
13
A. T = .
B. T = 9.

C. T =
.
D. T = 3.
4
2
Câu 16. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. m < 0 hoặc m > . B. 0 ≤ m < .
C. m ≥ 0.
D. 0 < m < .
4
4
4
2
Câu 17. Biết z0 là nghiệm phức có phần ảo âm của phương trình z − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. -1.
B. -3.
C. 2.
D. 1.
Câu 18. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?

B. P = 13.
C. P = 2 5.
D. P = 5.

A. P = 5.
z+i+1
Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một đường tròn.
C. Một đường thẳng.
D. Một Parabol.
Câu 20. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. −1.
B. 1.
C. 0.
D. 2.






−2

3i


z + 1


= 1.

Câu 21. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


3 − 2i

A. max |z| = 2.
B. max |z| = 1.
C. max |z| = 3.
D. max |z| = 2.
Câu 22. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 4.
C. r = 22.
D. r = 20.
Câu 23. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
1
4
B. .
D. √ .

A. √ .
C. √ .
2
13
2
5
Câu 24. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó độ dài của MN là


A. MN = 4.
B. MN = 5.
C. MN = 5.
D. MN = 2 5.
Câu 25. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
√ x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
A. w = 1 + √27i hoặcw = 1 − √ 27i.
B. w = √
27 − i hoặcw = 27√+ i.
C. w = 1 + 27 hoặcw = 1 − 27.
D. w = − 27 − i hoặcw = − 27 + i.
Câu 26. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. (x − 1)2 + (y − 4)2 = 125.
2

2
C. (x + 1) + (y − 2) = 125.
D. x = 2.

Câu 27. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


A. |z| = 5 2.
B. |z| = 33.
C. |z| = 10.
D. |z| = 50.

Câu 28. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
B. |z| > 2.
C. |z| < .
D. ≤ |z| ≤ 2.
A. < |z| < .
2
2
2
2
Trang 2/5 Mã đề 001



Câu 29. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên

√ mặt phẳng phức. Khi đó độ dài của MN là
B. MN = 4.
C. MN = 5.
D. MN = 2 5.
A. MN = 5.
1+i
z
Câu 30. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
15
A. S = .
B. S = .
C. S = .
D. S = .
4
4
2
2
Câu 31. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 4 = 0.
C. x + y − 5 = 0.

D. x − y + 8 = 0.
Câu 32. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Parabol.
C. Hai đường thẳng.
D. Đường tròn.
Câu 33. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. Phần thực của z là số âm.
B. z là số thuần ảo.
C. z là một số thực không dương.
D. |z| = 1.
Câu 34. Cho số phức z thỏa mãn |z| = 1. Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z
√ − 1|
A. P = −2016.
B. P = 2016.
C. P = 1.
D. max T = 2 5.
Câu 35. Cho z1 , z2 là hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị của biểu thức
P = |z1 + z2 |.




2
3
A. P = 3.
B. P = 2.
C. P =
.
D. P =

.
2
2
Câu 36. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2
A. 8.
B. 18.
C. 9.
D. 4.
Câu 37. Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = 1 và z1 +z2 +z3 = 0. Tính A = z21 +z22 +z23 .
A. A = 1 + i.
B. A = 1.
C. A = −1.
D. A = 0.






1
Câu 38. Cho số phức z thỏa mãn


z +


= 3. Tổng giá trị lớn nhất và nhỏ nhất của |z| là
z



A. 13.
B. 5.
C. 3.
D. 5.
Câu 39. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
B. Hai khối chóp có thể tích bằng nhau thì bằng nhau.
C. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
D. Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
Câu 40. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Hàm số có một điểm cực đại và một điểm cực tiểu.
B. Hàm số có hai điểm cực trị.
C. Giá trị cực tiểu của hàm số là 3.
D. Giá trị cực đại của hàm số là 0.
Câu 41. Cho hàm số y = −x4 − x2 + 1. Trong các khẳng định sau, khẳng định nào sai?
A. Đồ thị hàm số có một điểm cực đại.
B. Điểm cực tiểu của hàm số là (0; 1).
C. Đồ thị hàm số cắt trục tung tại điểm (0; 1).
D. Đồ thị hàm số khơng có tiệm cận.
Câu 42. Xét hàm số f (x) = −x4 + 2x2 + 3 trên đoạn [0; 2]. Trong các khẳng định sau, khẳng định nào
sai?
A. Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
B. Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
C. Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x = 1.
D. Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x = 0.
Trang 3/5 Mã đề 001


Câu 43. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.

1
A. V = .
3

1
B. V = .
2

1
C. V = .
6

D. V = 1.

C. 12.

D. 18.

Câu 44. Hình đa diện dưới đây có bao nhiêu cạnh?

A. 21.

B. 15.

Câu 45. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (−∞; 1).

B. (3; +∞).


C. (0; 2).

D. (1; 3).

Câu 46. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 17.

B. 15.

C. 7.

D. 3.

Câu 47. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới đây đúng?
R
R
2
A. f (x)dx = − sin x + x2 + C.
B. f (x)dx = sin x + x2 + C.
R
R
2
C. f (x)dx = − sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Câu 48. Phần ảo của số phức z = 2 − 3i là
A. −3.

B. −2.

C. 2.


D. 3.

Câu 49. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng
định nào dưới đây đúng?
A. d = 0.

B. d < R.

C. d > R.

D. d = R.

Câu 50. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt phẳng (S CD) bằng




B. 33 a.
C. 2 3 3 a.
D. 22 a.
A. 2a.
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×