Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
z2
Câu 1. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức
z1 +
là
z1
√
√
B. 5.
C. 5.
D. 13.
A. 11.
Câu 2. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 .
B. (1 + i)2018 = 21009 i. C. (1 + i)2018 = −21009 . D. (1 + i)2018 = −21009 i.
Câu 3. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 3.
B. 7.
C. −3.
D. −7.
Câu 4. Với mọi số phức z, ta có |z + 1|2 bằng
A. |z|2 + 2|z| + 1.
B. z + z + 1.
C. z · z + z + z + 1.
D. z2 + 2z + 1.
Câu 5. Cho số phức z thỏa mãn√z(1 + 3i) = 17 + i. Khi đó mơ-đun của số phức w
√ = 6z − 25i là
A. 13.
B. 2 5.
C. 5.
D. 29.
Câu 6. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2k.
B. A = 1.
C. A = 0.
D. A = 2ki.
Câu 7. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A. ln 32 .
B. ln 23 .
C. ln 6a2 .
D. ln a.
Câu 8. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 9. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (1; +∞).
D. (1; 2).
R 1
Câu 10. Cho x dx = F(x) + C. Khẳng định nào dưới đây đúng?
A. F ′ (x) = 1x .
B. F ′ (x) = ln x.
C. F ′ (x) = x22 .
D. F ′ (x) = − x12 .
Câu 11. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (3; +∞).
B. (12; +∞).
C. (−∞; 3).
D. (2; 3).
Câu 12. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
A. 359 .
B. 18
.
C. 354 .
D. 71 .
35
Câu 13. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
7
3
3
7
A. − .
B. .
C. − .
D. .
4
4
4
4
Câu 14. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng √
bao nhiêu?
√
A. MN = 2 5.
B. MN = 5.
C. MN = 10.
D. MN = 10.
Câu 15. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = −3 + i.
B. z = 3 − i.
C. z = −3 − i.
D. z = 3 + i.
Trang 1/5 Mã đề 001
Câu 16. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T = 9.
B. T = 3.
C. T =
.
D. T = .
2
4
Câu 17. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 0.
B. 1.
C. −2.
D. 2.
Câu 18. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 + i và −4 + i.
B. 4 − i và −4 + i.
C. 4 − i và 2 + 3i.
D. 5 − 2i và −5 + 2i.
Câu 19. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 2π.
C. 3π.
D. 4π.
Câu 20. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9
9 9
1
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
1
4
2
A. .
B. √ .
C. √ .
D. √ .
2
13
2
5
Câu 21. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x − y + 4 = 0.
C. x + y − 8 = 0.
D. x + y − 5 = 0.
Câu 22. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. 2π.
C. π.
D. 4π.
Câu 23. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
B.
.
C. 25π.
D. 5π.
A. .
4
2
z+i+1
Câu 24. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Parabol.
B. Một đường tròn.
C. Một Elip.
D. Một đường thẳng.
z − z
=2?
Câu 25. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Parabol.
B. Một đường tròn.
C. Một Elip.
D. Một đường thẳng.
√
Câu 26. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 7.
C. max |z| = 3.
D. max |z| = 6.