Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 3.
B. −3.
C. −7.
D. 7.
Câu 2. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. P(−2; 3).
B. M(2; −3).
C. N(2; 3).
D. Q(−2; −3).
(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
Câu 3. Cho số phức z thỏa mãn z =
1−i
1+i
nào đúng?
1
A. z = z.
B. |z| = 4.
C. z là số thuần ảo.
D. z = .
z
Câu 4. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 4.
B. 3.
C. 2.
D. 1.
Câu 5. Với mọi số phức z, ta có |z + 1|2 bằng
A. |z|2 + 2|z| + 1.
B. z · z + z + z + 1.
C. z + z + 1.
D. z2 + 2z + 1.
Câu 6. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 − 2i.
B. 11 + 2i.
C. −3 − 10i.
D. −3 + 2i.
Câu 7. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (3; +∞).
B. (2; 3).
C. (−∞; 3).
D. (12; +∞).
Câu 8. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 9. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =
x3 + (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
A. 6.
B. 11.
C. 5.
D. 12.
Câu 10. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường tròn. Tâm của đường tròn đó có tọa độ là
A. (−2; 0).
B. (2; 0).
C. (0; 2).
D. (0; −2).
Câu 11. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (−1; 2).
B. (0; 1).
C. (1; 2).
D. (1; 0).
Câu 12. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 89.
B. 48.
C. 90.
D. 49.
Câu 13. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
A. |w| = 2.
B. |w| = 3.
C. |w| = 2 2.
D. |w| = 5.
Trang 1/5 Mã đề 001
Câu 14. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 1.
B. 2.
C. −2.
D. 0.
Câu 15. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?
√
B. P = 2 5.
C. P = 5.
D. P = 13.
A. P = 5.
Câu 16. Căn bậc hai của -4 trong tập số phức là.
A. 2 hoặc -2.
B. 2i hoặc -2i.
C. không tồn tại.
D. 4i.
Câu 17. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
số phức w = z2 + 2z bằng bao nhiêu?√
√
√
A. |w| = 5.
B. |w| = 37.
C. |w| = 5 13.
D. |w| = 13.
Câu 18. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng√bao nhiêu?
√
B. MN = 2 5.
C. MN = 10.
D. MN = 5.
A. MN = 10.
Câu 19. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Hai đường thẳng.
C. Một đường thẳng.
D. Parabol.
Câu 20. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
1+i
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
15
25
B. S = .
C. S = .
D. S = .
A. S = .
4
2
4
2
Câu 21. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 4π.
B. 3π.
C. π.
D. 2π.
Câu 22. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ w = x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
√ z1 , z2 và số phức
+ i.
B. w = 1 +
A. w = 27√− i hoặcw = 27 √
√ 27i hoặcw = 1 −√ 27i.
D. w = − 27 − i hoặcw = − 27 + i.
C. w = 1 + 27 hoặcw = 1 − 27.
Câu 23. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 4.
C. r = 20.
D. r = 5.
Câu 24. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 5π.
B.
.
C. .
D. 25π.
2
4
√
Câu 25. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
1
3
3
A. |z| < .
B. < |z| < .
C. |z| > 2.
D. ≤ |z| ≤ 2.
2
2
2
2
2
Câu 26. Cho các số phức z thoả mãn (1 + z) là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Đường tròn.
C. Hai đường thẳng.
D. Parabol.
1+i
Câu 27. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
′
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM .
15
15
25
25
A. S = .
B. S = .
C. S = .
D. S = .
2
4
2
4
z+i+1
là số thuần ảo?
Câu 28. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một Elip.
B. Một đường tròn.
C. Một Parabol.
D. Một đường thẳng.
Trang 2/5 Mã đề 001
Câu 29. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x − y + 4 = 0.
C. x + y − 5 = 0.
D. x + y − 8 = 0.
Câu 30. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 25π.
B.
.
C. .
D. 5π.
2
4
√
Câu 31. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
B. |z| = 50.
C. |z| = 33.
D. |z| = 10.
A. |z| = 5 2.
Câu 32. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. 4π.
C. π.
D. 2π.
Câu 33. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. z là số thuần ảo.
B. |z| = 1.
C. z là một số thực không dương.
D. Phần thực của z là số âm.
z+1
là số thuần ảo. Tìm |z| ?
Câu 34. Cho số phức z , 1 thỏa mãn
z−1
1
A. |z| = 4.
B. |z| = 1.
C. |z| = .
D. |z| = 2.
2
Câu 35. Cho z1 , z2 là hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị của biểu thức
P = |z1 + z√2 |.
√
√
√
2
3
A. P =
.
B. P = 2.
C. P =
.
D. P = 3.
2
2
2
1
Câu 36. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2
1
z1
z2
. Tính giá trị biểu thức P =
+