Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (869)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (119.4 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Tính
√ mô-đun của số phức z thỏa mãn z(2 − i) + 13i = 1.

5 34
A. |z| =
.
B. |z| = 34.
C. |z| = 34.
3
Câu 2. Với mọi số phức z, ta có |z + 1|2 bằng
A. z + z + 1.
B. z · z + z + z + 1.

C. |z|2 + 2|z| + 1.


D. |z| =

34
.
3

D. z2 + 2z + 1.



Câu 3. Cho hai√số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
B. |z1 + z2 | = 13.
C. |z1 + z2 | = 1.
D. |z1 + z2 | = 5.
A. |z1 + z2 | = 5.
Câu 4. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. M(2; −3).
B. P(−2; 3).
C. Q(−2; −3).
D. N(2; 3).
Câu 5. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = 7 − 3i.
B. w = −3 − 3i.
C. w = −7 − 7i.

D. w = 3 + 7i.

Câu 6. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 2.
B. 1.
C. 3.

D. 4.


Câu 7. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng định
nào dưới đây đúng?
A. d = R.
B. d < R.
C. d > R.
D. d = 0.
Câu 8. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
A. 16π
.
B. 16
.
C. 16π
.
D. 169 .
15
15
9
Câu 9. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng




B. 62 a3 .
A. 2a3 .
C. 22 a3 .
D. 42 a3 ..
Câu 10. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là

A. (−1; 2).
B. (1; 2).
C. (1; 0).
D. (0; 1).
R4
R4
R4
Câu 11. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 5.
B. 1.
C. 6.
D. −1.
i
R2
R 2 h1
Câu 12. Nếu 0 f (x)dx = 4 thì 0 2 f (x) − 2 dx bằng
A. 0.
B. −2.
C. 6.
D. 8.
Câu 13. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z√2 | + |z3 | + |z4 |.


A. T = 2 3.
B. T = 2 + 2 3.
C. T = 4 + 2 3.
D. T = 4.
Câu 14. Căn bậc hai của -4 trong tập số phức là.
A. 2 hoặc -2.

B. 2i hoặc -2i.
C. không tồn tại.

D. 4i.
Trang 1/5 Mã đề 001


Câu 15. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √



A. |w| = 3.
B. |w| = 5.
C. |w| = 2.
D. |w| = 2 2.
Câu 16. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
A. 1.
B. 2.
C. 3.
D. 4.
Câu 17. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mô-đun của
số phức w = z2 + 2z bằng bao nhiêu?√


C. |w| = 37.
D. |w| = 5 13.
A. |w| = 5.
B. |w| = 13.
Câu 18. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0

Khi đó tổng phần thực và phần ảo của z0 là
A. 1.
B. -1.
C. -3.
D. 2.






−2

3i
z + 1


= 1.
Câu 19. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện



√ 3 − 2i
A. max |z| = 1.
B. max |z| = 3.
C. max |z| = 2.
D. max |z| = 2.
Câu 20. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 2π.

B. π.
C. 4π.
D. 3π.
z+i+1
là số thuần ảo?
Câu 21. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một đường thẳng.
B. Một Elip.
C. Một Parabol.
D. Một đường trịn.

Câu 22. (Tốn Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
A. ≤ |z| ≤ 2.
B. |z| > 2.
C. < |z| < .
D. |z| < .
2
2
2
2
Câu 23. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 4π.

C. 3π.
D. π.
Câu 24. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x − 5)2 + (y − 4)2 = 125.
C. (x + 1)2 + (y − 2)2 = 125.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 25. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


A. 5π.
B. 25π.
C. .
D. .
4
2
z+i+1
Câu 26. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường thẳng.
B. Một Parabol.
C. Một đường tròn.
D. Một Elip.
Câu 27. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 20.
B. r = 22.

C. r = 4.
D. r = 5.
1+i
Câu 28. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
15
25
B. S = .
C. S = .
D. S = .
A. S = .
4
4
2
2
Câu 29. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Parabol.
B. Đường tròn.
C. Một đường thẳng.
D. Hai đường thẳng.
Trang 2/5 Mã đề 001









−2 − 3i


Câu 30. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1


= 1.
3

2i

A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 3.
Câu 31. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.



3
2
.
B. P = 2.

.
D. P = 3.
C. P =
A. P =
2
2
Câu 32. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. 2π.
C. π.
D. 4π.

2 2
. Mệnh đề nào dưới đây
Câu 33. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
3
đúng?

A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √2.
2 2
8
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =
.
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
3
3
Câu 34. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. z là một số thực không dương.

B. |z| = 1.
C. z là số thuần ảo.
D. Phần thực của z là số âm.




×