Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Tính
√ mô-đun của số phức z thỏa mãn z(2 − i) + 13i = 1.
√
5 34
A. |z| =
.
B. |z| = 34.
C. |z| = 34.
3
Câu 2. Với mọi số phức z, ta có |z + 1|2 bằng
A. z + z + 1.
B. z · z + z + z + 1.
C. |z|2 + 2|z| + 1.
√
D. |z| =
34
.
3
D. z2 + 2z + 1.
Câu 3. Cho hai√số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
B. |z1 + z2 | = 13.
C. |z1 + z2 | = 1.
D. |z1 + z2 | = 5.
A. |z1 + z2 | = 5.
Câu 4. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. M(2; −3).
B. P(−2; 3).
C. Q(−2; −3).
D. N(2; 3).
Câu 5. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = 7 − 3i.
B. w = −3 − 3i.
C. w = −7 − 7i.
D. w = 3 + 7i.
Câu 6. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 2.
B. 1.
C. 3.
D. 4.
Câu 7. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng định
nào dưới đây đúng?
A. d = R.
B. d < R.
C. d > R.
D. d = 0.
Câu 8. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
A. 16π
.
B. 16
.
C. 16π
.
D. 169 .
15
15
9
Câu 9. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng
√
√
√
√
B. 62 a3 .
A. 2a3 .
C. 22 a3 .
D. 42 a3 ..
Câu 10. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (−1; 2).
B. (1; 2).
C. (1; 0).
D. (0; 1).
R4
R4
R4
Câu 11. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 5.
B. 1.
C. 6.
D. −1.
i
R2
R 2 h1
Câu 12. Nếu 0 f (x)dx = 4 thì 0 2 f (x) − 2 dx bằng
A. 0.
B. −2.
C. 6.
D. 8.
Câu 13. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z√2 | + |z3 | + |z4 |.
√
√
A. T = 2 3.
B. T = 2 + 2 3.
C. T = 4 + 2 3.
D. T = 4.
Câu 14. Căn bậc hai của -4 trong tập số phức là.
A. 2 hoặc -2.
B. 2i hoặc -2i.
C. không tồn tại.
D. 4i.
Trang 1/5 Mã đề 001
Câu 15. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
A. |w| = 3.
B. |w| = 5.
C. |w| = 2.
D. |w| = 2 2.
Câu 16. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
A. 1.
B. 2.
C. 3.
D. 4.
Câu 17. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mô-đun của
số phức w = z2 + 2z bằng bao nhiêu?√
√
√
C. |w| = 37.
D. |w| = 5 13.
A. |w| = 5.
B. |w| = 13.
Câu 18. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 1.
B. -1.
C. -3.
D. 2.
−2
−
3i
z + 1
= 1.
Câu 19. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
√ 3 − 2i
A. max |z| = 1.
B. max |z| = 3.
C. max |z| = 2.
D. max |z| = 2.
Câu 20. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 2π.
B. π.
C. 4π.
D. 3π.
z+i+1
là số thuần ảo?
Câu 21. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một đường thẳng.
B. Một Elip.
C. Một Parabol.
D. Một đường trịn.
√
Câu 22. (Tốn Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
A. ≤ |z| ≤ 2.
B. |z| > 2.
C. < |z| < .
D. |z| < .
2
2
2
2
Câu 23. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 4π.
C. 3π.
D. π.
Câu 24. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x − 5)2 + (y − 4)2 = 125.
C. (x + 1)2 + (y − 2)2 = 125.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 25. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 5π.
B. 25π.
C. .
D. .
4
2
z+i+1
Câu 26. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường thẳng.
B. Một Parabol.
C. Một đường tròn.
D. Một Elip.
Câu 27. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 20.
B. r = 22.
C. r = 4.
D. r = 5.
1+i
Câu 28. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
15
25
B. S = .
C. S = .
D. S = .
A. S = .
4
4
2
2
Câu 29. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Parabol.
B. Đường tròn.
C. Một đường thẳng.
D. Hai đường thẳng.
Trang 2/5 Mã đề 001
−2 − 3i
Câu 30. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3
−
2i
√
A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 3.
Câu 31. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
.
B. P = 2.
.
D. P = 3.
C. P =
A. P =
2
2
Câu 32. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. 2π.
C. π.
D. 4π.
√
2 2
. Mệnh đề nào dưới đây
Câu 33. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
3
đúng?
√
A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √2.
2 2
8
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =
.
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
3
3
Câu 34. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. z là một số thực không dương.
B. |z| = 1.
C. z là số thuần ảo.
D. Phần thực của z là số âm.