Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (877)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.81 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Số phức z =
A. -1.

4 + 2i + i2017
có tổng phần thực và phần ảo là
2−i
B. 1.
C. 2.

Câu 2. Cho P = 1 + i + i2 + i3 + · · · + i2017 . Đâu là phương án chính xác?
A. P = 1 + i.
B. P = 2i.
C. P = 0.

D. 3.
D. P = 1.

Câu 3. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. −22016 .
B. 21008 .
C. −21008 .
D. −21008 + 1.
Câu 4. Cho hai√số phức z1 = 1 + i và z2 √


= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
B. |z1 + z2 | = 13.
C. |z1 + z2 | = 1.
D. |z1 + z2 | = 5.
A. |z1 + z2 | = 5.
Câu 5.√Cho số phức z1 = 3 + 2i,√z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là √
A. 3 10.
B. 10 3.
C. 2 30.
D. 130.
Câu 6. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Khơng có số nào.
B. 0 và 1.
C. Chỉ có số 1.

D. C.Truehỉ có số 0.

Câu 7. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = lnx3 .
B. y′ = x ln1 3 .
C. y′ = − x ln1 3 .

D. y′ = 1x .

Câu 8. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
 
C. ln a.
A. ln 6a2 .
B. ln 23 .


D. ln 23 .

Câu 9. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 30◦ .
B. 90◦ .
C. 60◦ .
D. 45◦ .
Câu 10. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 1.
B. 3.
C. 4.
D. 2.
Câu 11. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
18
B. 354 .
C. 35
.
D. 359 .
A. 17 .
Câu 12. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 0.
B. −1.
C. 3.
D. 2.

Câu 13. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. -3.
B. -1.
C. 2.
D. 1.
Câu 14. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z2 | + |z3 | + |z4 |.



A. T = 4.
B. T = 2 3.
C. T = 2 + 2 3.
D. T = 4 + 2 3.
Câu 15. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √



A. |w| = 2.
B. |w| = 2 2.
C. |w| = 5.
D. |w| = 3.
Trang 1/5 Mã đề 001


Câu 16. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
số phức w = z2 + 2z bằng bao nhiêu?√



C. |w| = 37.
D. |w| = 13.
A. |w| = 5.
B. |w| = 5 13.
Câu 17. Căn bậc hai của -4 trong tập số phức là.
A. 2 hoặc -2.
B. 4i.
C. 2i hoặc -2i.

D. không tồn tại.

Câu 18. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = −3 + i.
B. z = 3 + i.
C. z = 3 − i.

D. z = −3 − i.

Câu 19. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9 9
1
9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
2
4

1
1
A. √ .
D. √ .
B. √ .
C. .
2
13
5
2
z+i+1
là số thuần ảo?
z + z + 2i
A. Một đường thẳng.
B. Một Elip.
C. Một Parabol.
D. Một đường tròn.






−2 − 3i


Câu 21. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1



= 1.
3 − 2i

A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 3.
D. max |z| = 2.
Câu 20. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =

Câu 22. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 4.
C. r = 20.
D. r = 5.
Câu 23. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 4π.
C. 3π.
D. π.
Câu 24. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 2π.
B. 4π.
C. π.
D. 3π.
Câu 25. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x + y − 5 = 0.
C. x + y − 8 = 0.
D. x − y + 4 = 0.
Câu 26. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√ độ dài của MN là

A. MN = 5.
B. MN = 5.
C. MN = 2 5.
D. MN = 4.
Câu 27. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




3
2
A. P = 2.
B. P =
.
C. P = 3.
D. P =
.
2
2
Câu 28. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm

1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
2
4
1
1
A. √ .
B. √ .
D. √ .
C. .
2
13
5
2

Câu 29. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
A. |z| > 2.
B. < |z| < .
C. |z| < .
D. ≤ |z| ≤ 2.

2
2
2
2
Trang 2/5 Mã đề 001


Câu 30. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


A. 5π.
B.
.
C. .
D. 25π.
4
2
z+i+1
là số thuần ảo?
Câu 31. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một Elip.
B. Một Parabol.
C. Một đường thẳng.
D. Một đường tròn.
Câu 32. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =

1+i
z

2

trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
25
15
15
A. S = .
B. S = .
C. S = .
D. S = .
4
2
2
4


√ 

2 42 √
Câu 33. Cho số phức z thỏa mãn 1 − 5i |z| =
+ 3i+ 15. Mệnh đề nào dưới đây là đúng?
z
1
3
5
A. < |z| < 2.
B. < |z| < 3.
C. 3 < |z| < 5.
D. < |z| < 4.

2
2
2






1
Câu 34. Cho số phức z thỏa mãn


z +


= 3. Tổng giá trị lớn nhất và nhỏ nhất của |z| là
z


A. 3.
B. 5.
C. 13.
D. 5.
2z − i
. Mệnh đề nào sau đây đúng?
Câu 35. Cho số phức z thỏa mãn |z| ≤ 1. ĐặtA =
2 + iz
A. |A| ≥ 1.
B. |A| ≤ 1.

C. |A| < 1.
D. |A| > 1.

Câu 36. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
1
3
3
1
A. < |z| < .
B. |z| > 2.
C. ≤ |z| ≤ 2.
D. |z| < .
2
2
2
2
z
Câu 37. Cho số phức z , 0 sao cho z không phải là số thực và w =
là số thực. Tính giá trị biểu
1 + z2
|z|
bằng?
thức
1 + |z|2

2
1
1
A. 2.
B.

.
C. .
D. .
3
5
2
Câu 38. (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b. Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2 + az + b √
= 0. Tính T = |z1 | + |z2 |. √


2 97
2 85
A. T = 2 13.
B. T = 4 13.
C. T =
.
D. T =
.
3
3
Câu 39. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 12a3 .
B. V = 3a3 .
C. V = a3 .
D. V = 6a3 .
Câu 40. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. 1.
B. −10.

C. 17.
D. −35.
Câu 41. Hình đa diện dưới đây có bao nhiêu cạnh?

A. 18.

B. 21.

C. 15.

D. 12.
Trang 3/5 Mã đề 001


Câu 42. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối lập phương.

B. Khối mười hai mặt đều.

C. Khối bát diện đều.

D. Khối tứ diện đều.

Câu 43. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. x = 1.

Câu 44. Cho hàm số y =

B. (0; 3).


C. x = 0.

D. (1; 2).

2x − 3
. Trong các khẳng định sau, khẳng định nào đúng?
−x + 2

A. Hàm số đồng biến trên khoảng (−2; +∞).

B. Hàm số đồng biến trên tập xác định của nó.

C. Hàm số đồng biến trên khoảng (2; +∞).

D. Hàm số đồng biến trên khoảng (−2; 2).

Câu 45. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (1; 2; −3).

B. (−1; −2; −3).

C. (1; −2; 3).

D. (−1; 2; 3).

Câu 46. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
A. 34 .


B. 52 .

C. 41 .

D. 12 .

Câu 47. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (1; 0).

B. (1; 2).

C. (0; 1).

D. (−1; 2).

Câu 48. Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 90◦ .

B. 60◦ .

C. 30◦ .

D. 45◦ .

Câu 49. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 3.


B. 0.

C. −1.

D. 2.

Câu 50. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (12; +∞).

B. (2; 3).

C. (−∞; 3).

D. (3; +∞).
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001


×