Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (843)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.49 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

2(1 + 2i)
Câu 1. Cho số phức z thỏa mãn (2 + i)z +
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
1+i
A. 4.
B. 3.
C. 13.
D. 5.
(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
Câu 2. Cho số phức z thỏa mãn z =
1−i
1+i
nào đúng?
1
A. z = z.
B. z = .
C. z là số thuần ảo.
D. |z| = 4.
z
4(−3 + i) (3 − i)2
Câu 3. Cho số phức z thỏa mãn z =


+
. Mô-đun của số phức w = z − iz + 1 là
−i



√1 − 2i
A. |w| = 48.
B. |w| = 6 3.
C. |w| = 85.
D. |w| = 4 5.
Câu 4. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 2.
B. 1.
C. 3.
D. 0.
Câu 5. Tìm số phức liên hợp của số phức z = i(3i + 1).
B. z = 3 + i.
C. z = 3 − i.
A. z = −3 − i.

D. z = −3 + i.

Câu 6. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. P(−2; 3).
B. M(2; −3).

C. Q(−2; −3).
D. N(2; 3).
i
R2
R 2 h1
Câu 7. Nếu 0 f (x)dx = 4 thì 0 2 f (x) − 2 dx bằng
A. 8.
B. 6.
C. 0.
D. −2.
Câu 8. Tiệm cận ngang của đồ thị hàm số y =
A. y = 13 .
B. y = 23 .

2x+1
3x−1

là đường thẳng có phương trình:
C. y = − 32 .
D. y = − 13 .

Câu 9. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn






log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 90.


B. 48.

C. 49.

D. 89.

Câu 10. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
B. 14 .
C. 21 .
D. 43 .
A. 25 .
R4
R4
R4
Câu 11. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 5.
B. 6.
C. 1.
D. −1.
Câu 12. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 7.
B. 15.
C. 3.
D. 17.
Câu 13. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (5 − 2i)z − 9 + 7i = 0.
B. z2 + (1 + 4i)z − 9 + 7i = 0.
C. z2 − (5 − 2i)z + 9 − 7i = 0.

D. z2 − (1 + 4i)z + 9 − 7i = 0.
Câu 14. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và 2 + 3i.
B. 4 + i và −4 + i.
C. 5 − 2i và −5 + 2i.

D. 4 − i và −4 + i.
Trang 1/5 Mã đề 001


Câu 15. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = −3 + i.
B. z = −3 − i.
C. z = 3 − i.

D. z = 3 + i.

Câu 16. Cho phương trình bậc hai az + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
c
A. Phương trình đã cho có tích hai nghiệm bằng .
a
−b
B. Phương trình đã cho có tổng hai nghiệm bằng
.
a
2
C. Nếu ∆ = b − 4ac < 0 thì phương trình đã vơ nghiệm.
D. Phương trình đã cho ln có nghiệm.
2


Câu 17. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. −2.
B. 2.
C. 0.
D. 1.
Câu 18. Căn bậc hai của -4 trong tập số phức là.
A. 4i.
B. 2i hoặc -2i.
C. 2 hoặc -2.

D. không tồn tại.






−2 − 3i


z + 1


= 1.
Câu 19. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


3


2i

A. max |z| = 2.
B. max |z| = 3.
C. max |z| = 1.
D. max |z| = 2.
Câu 20. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. (x − 5)2 + (y − 4)2 = 125.
2
2
C. (x − 1) + (y − 4) = 125.
D. x = 2.
Câu 21. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. 2π.
C. π.
D. 4π.
z+i+1
là số thuần ảo?
Câu 22. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một đường tròn.
B. Một Elip.
C. Một đường thẳng.
D. Một Parabol.







z−z


=2?
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho



z − 2i

A. Một đường thẳng.
B. Một đường tròn.
C. Một Parabol.
D. Một Elip.
Câu 24. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√độ dài của MN là

A. MN = 4.
B. MN = 2 5.
C. MN = 5.
D. MN = 5.
Câu 25. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. −1.

C. 2.
D. 1.





×