Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (891)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.81 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mô-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 1.
B. 0.
C. 2.
D. 3.
Câu 2. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2k.
B. A = 1.
C. A = 0.
D. A = 2ki.
(1 + i)(2 − i)
Câu 3. Mô-đun của số phức z =

√ 1 + 3i

A. |z| = 5.
B. |z| = 2.
C. |z| = 5.
D. |z| = 1.


2(1 + 2i)
Câu 4. Cho số phức z thỏa mãn (2 + i)z +
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
1+i
A. 4.
B. 3.
C. 5.
D. 13.
2017
4 + 2i + i
có tổng phần thực và phần ảo là
Câu 5. Số phức z =
2−i
A. 3.
B. 2.
C. 1.
D. -1.
Câu 6. Với mọi số phức z, ta có |z + 1|2 bằng
A. z + z + 1.
B. z · z + z + z + 1.
C. z2 + 2z + 1.
i
R2
R2h
Câu 7. Nếu 0 f (x)dx = 4 thì 0 21 f (x) − 2 dx bằng
A. −2.
B. 0.
C. 8.

D. |z|2 + 2|z| + 1.

D. 6.

Câu 8. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A. ln 32 .

B. ln a.

 
C. ln 6a2 .

D. ln 23 .

Câu 9. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vng cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng




B. 62 a3 .
A. 2a3 .
C. 42 a3 ..
D. 22 a3 .
Câu 10. Phần ảo của số phức z = 2 − 3i là
A. 3.
B. 2.

C. −3.

Câu 11. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (−∞; 1).

B. (−∞; 1].
C. [1; +∞).

D. −2.
D. (1; +∞).

Câu R12. Cho hàm số f (x) = cos x + x. Khẳng định nàoR dưới đây đúng?
2
A. f (x)dx = sin x + x2 + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
C. f (x)dx = − sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Câu 13. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
3
3
1
1
A. − .
B. .
C. .
D. − .
2
2
2
2
2
Câu 14. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2

bằng bao nhiêu?

13
13
A. T =
.
B. T = .
C. T = 9.
D. T = 3.
2
4
Trang 1/5 Mã đề 001


Câu 15. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Phương trình đã cho ln có nghiệm.
B. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
−b
.
C. Phương trình đã cho có tổng hai nghiệm bằng
a
c
D. Phương trình đã cho có tích hai nghiệm bằng .
a
Câu 16. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 − i.
B. z = −3 − i.
C. z = 3 + i.
D. z = −3 + i.

Câu 17. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. m ≥ 0.
B. 0 ≤ m < .
C. m < 0 hoặc m > . D. 0 < m < .
4
4
4
Câu 18. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 4.
B. 1.
C. 3.
D. 2.






−2 − 3i


Câu 19. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1



= 1.
3 − 2i

A. max |z| = 2.
B. max |z| = 2.
C. max |z| = 3.
D. max |z| = 1.
Câu 20. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x + y − 5 = 0.
C. x − y + 8 = 0.
D. x − y + 4 = 0.

Câu 21. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 4.
C. max |z| = 6.
D. max |z| = 7.
Câu 22. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



A. max T = 2 5.
B. max T = 3 2.
C. max T = 3 5.
D. max T = 2 10.

Câu 23. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


.
C. .
D. 25π.
A. 5π.
B.
2
4





z − z





=2?
Câu 24. Tìm tập hợp các điểm M biểu diễn số phức z sao cho


z − 2i

A. Một Parabol.
B. Một Elip.

C. Một đường tròn.
D. Một đường thẳng.
Câu 25. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. π.
C. 4π.
D. 3π.

Câu 26. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
1
3
A. ≤ |z| ≤ 2.
B. |z| > 2.
C. |z| < .
D. < |z| < .
2
2
2
2
Câu 27. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


A. 5π.
B.
.

C. .
D. 25π.
4
2
Câu 28. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 4 và 3.
B. 5 và 3.
C. 10 và 4.
D. 5 và 4.
Trang 2/5 Mã đề 001


Câu 29. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x + y − 5 = 0.
C. x + y − 8 = 0.
D. x − y + 4 = 0.
Câu 30. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9 9
9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2

1
4
A. .
B. √ .
C. √ .
D. √ .
2
13
5
2

2
Câu 31. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2| − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


A. |z| = 5 2.
B. |z| = 50.
C. |z| = 33.
D. |z| = 10.
Câu 32. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. −1.
C. 1.
D. 0.
Câu 33. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.




B. 10.
C. 2 5.
D. 15.
A. 5.
2z − i
. Mệnh đề nào sau đây đúng?
Câu 34. Cho số phức z thỏa mãn |z| ≤ 1. ĐặtA =
2 + iz
A. |A| ≤ 1.
B. |A| < 1.
C. |A| > 1.
D. |A| ≥ 1.
Câu 35. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
Tính giá trị của biểu thức P = z2017
+ z2017
+ · · · + z2017
1
2
2015 + z2016
A. P = 1.
B. P = 2016.
C. P = −2016.
D. P = 0.

Câu 36. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
1
1
3

3
B. |z| < .
C. |z| > 2.
D. < |z| < .
A. ≤ |z| ≤ 2.
2
2
2
2
Câu 37. Cho z1 , z2 , z3 là các số phức thỏa mãn |z1 | = |z2 | = |z3 | = 1. Khẳng định nào sau đây đúng?
A. |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 |.
B. |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 |.
C. |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 |.
D. |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 |.
z
Câu 38. Cho số phức z thỏa mãn z không phải là số thực và ω =
là số thực. Giá trị lớn nhất của
2 + z2
biểu thức M = |z + 1 − i| là


D. 2 2.
A. 8.
B. 2.
C. 2.
Câu 39. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (−1; 0).
B. (0; +∞).
C. (−∞; 0).

D. (−1; +∞).
2x − 3
Câu 40. Cho hàm số y =
. Trong các khẳng định sau, khẳng định nào đúng?
−x + 2
A. Hàm số đồng biến trên khoảng (2; +∞).
B. Hàm số đồng biến trên tập xác định của nó.
C. Hàm số đồng biến trên khoảng (−2; 2).
D. Hàm số đồng biến trên khoảng (−2; +∞).
Câu 41. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 1.
B. 0.
C. 3.
D. 2.
Câu 42. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 3a3 .
B. V = 6a3 .
C. V = 12a3 .
D. V = a3 .
Câu 43. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
1
1
1
A. V = .
B. V = .
C. V = .
D. V = 1.
6

2
3
Trang 3/5 Mã đề 001


Câu 44. Hình đa diện dưới đây có bao nhiêu cạnh?

A. 12.

B. 21.

C. 15.

D. 18.

Câu 45. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. −1.

B. 3.

C. 2.

D. 0.




×