Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
!2016
Câu 1. Số phức z =
A. 0.
1+i
1−i
+
1−i
1+i
B. 2.
!2018
bằng
C. −2.
D. 1 + i.
Câu 2. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 i. B. (1 + i)2018 = 21009 .
C. (1 + i)2018 = −21009 i. D. (1 + i)2018 = −21009 .
√
Câu 3. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. m ≥ 1 hoặc m ≤ 0. B. m ≥ 0 hoặc m ≤ −1. C. −1 ≤ m ≤ 0.
D. 0 ≤ m ≤ 1.
Câu 4. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. 11 + 2i.
B. −3 − 10i.
C. −3 + 2i.
D. −3 − 2i.
2017
(1 + i)
có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 5. Số phức z =
21008 i
A. 1.
B. 2.
C. 21008 .
D. 0.
Câu 6. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 2.
B. 3.
C. 0.
D. 1.
Câu 7. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (1; −2; 3).
B. (−1; 2; 3).
C. (1; 2; −3).
D. (−1; −2; −3).
Câu 8. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =
x3 + (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
A. 12.
B. 5.
C. 11.
D. 6.
= y−1
=
Câu 9. Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−2
2
2
phẳng đi qua A và chứa d. Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 1.
B. 13 .
C. 113 .
D. 5.
R4
R4
R4
Câu 10. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 6.
B. −1.
C. 1.
D. 5.
z−1
.
−3
Gọi (P) là mặt
Câu 11. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 89.
B. 48.
C. 90.
D. 49.
Câu R12. Cho hàm số f (x) = cos x + x. Khẳng định nàoR dưới đây đúng?
2
A. f (x)dx = − sin x + x2 + C.
B. f (x)dx = sin x + x2 + C.
R
R
2
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = − sin x + x2 + C.
Câu 13. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 12.
B. −8.
C. 8.
D. −12.
Trang 1/5 Mã đề 001
Câu 14. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
c
A. Phương trình đã cho có tích hai nghiệm bằng .
a
B. Phương trình đã cho ln có nghiệm.
−b
.
C. Phương trình đã cho có tổng hai nghiệm bằng
a
D. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
Câu 15. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. 0 < m < .
B. 0 ≤ m < .
C. m < 0 hoặc m > . D. m ≥ 0.
4
4
4
Câu 16. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. −1.
B. 2.
C. −4.
D. 5.
Câu 17. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 0.
B. 1.
C. −2.
D. 2.
Câu 18. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 1.
B. 4.
C. 2.
D. 3.
−2 − 3i
z + 1
= 1.
Câu 19. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
3 − 2i
√
A. max |z| = 2.
B. max |z| = 3.
C. max |z| = 1.
D. max |z| = 2.
Câu 20. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu
z
là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác đều.
z+i+1
Câu 21. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường tròn.
B. Một Elip.
C. Một đường thẳng.
D. Một Parabol.
Câu 22. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√độ dài của MN là
√
A. MN = 4.
B. MN = 2 5.
C. MN = 5.
D. MN = 5.
Câu 23. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
A. w = 1 +
27
hoặcw
=
1
−
27.
B.
w
=
1
+
27i
hoặcw
=
1
−
27i.
√
√
√
√
C. w = − 27 − i hoặcw = − 27 + i.
D. w = 27 − i hoặcw = 27 + i.
Câu 24. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x − 1)2 + (y − 4)2 = 125.
C. (x − 5)2 + (y − 4)2 = 125.
D. (x + 1)2 + (y − 2)2 = 125.
√
Câu 25. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 7.
C. max |z| = 6.
D. max |z| = 3.
Câu 26. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên
√ mặt phẳng phức. Khi đó độ dài của MN là
√
A. MN = 5.
B. MN = 5.
C. MN = 2 5.
D. MN = 4.
Câu 27. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. 2π.
C. π.
D. 4π.
Trang 2/5 Mã đề 001
Câu 28. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. π.
C. 4π.
D. 2π.
√
Câu 29. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 6.
C. max |z| = 7.
D. max |z| = 3.
z−z
=2?
Câu 30. Tìm tập hợp các điểm M biểu diễn số phức z sao cho