Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (656)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.42 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

4 − 2i (1 − i)(2 + i)
+

Câu 1. Phần thực của số phức z =
2−i
2 + 3i
11
29
11
A. .
B.
.
C. − .
13
13
13
Câu 2. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Khơng có số nào.
B. Chỉ có số 1.
C. C.Truehỉ có số 0.

D. −


29
.
13

D. 0 và 1.

(1 + i)
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
A. 2.
B. 21008 .
C. 1.
D. 0.
!2016
!2018
1+i
1−i
Câu 4. Số phức z =
+
bằng
1−i
1+i
A. −2.
B. 2.
C. 1 + i.
D. 0.
Câu 3. Số phức z =

2017


Câu 5. Cho số phức z thỏa mãn z(1 + 3i) = 17 + i. Khi đó
√ mơ-đun của số phức w
√ = 6z − 25i là
D. 29.
A. 13.
B. 5.
C. 2 5.
Câu 6. Với mọi số phức z, ta có |z + 1|2 bằng
A. |z|2 + 2|z| + 1.
B. z2 + 2z + 1.

C. z · z + z + z + 1.

Câu 7. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
B. y′ = 1x .
C. y′ = − x ln1 3 .
A. y′ = x ln1 3 .

D. z + z + 1.
D. y′ =

ln 3
.
x

Câu 8. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A. y = x3 − 3x − 5.
B. y = x−3
.
C. y = x2 − 4x + 1.

D. y = x4 − 3x2 + 2.
x−1
Câu 9. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường trịn. Tâm của đường trịn đó có tọa độ là
A. (0; −2).
B. (−2; 0).
C. (0; 2).
D. (2; 0).
Câu 10. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. [1; +∞).
B. (1; +∞).
C. (−∞; 1].

D. (−∞; 1).




Câu 11. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =

x3 + (a + 2)x + 9 − a2


đồng biến trên khoảng (0; 1)?
A. 6.
B. 5.
C. 11.
D. 12.
Câu 12. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

A. (0; 2).
B. (3; +∞).
C. (−∞; 1).

D. (1; 3).

Câu 13. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng √
bao nhiêu?

B. MN = 10.
C. MN = 5.
D. MN = 10.
A. MN = 2 5.
Câu 14. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. −2.
B. 0.
C. 1.
D. 2.
Câu 15. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. 0 < m < .
B. 0 ≤ m < .
C. m ≥ 0.
D. m < 0 hoặc m > .
4

4
4
Trang 1/5 Mã đề 001


Câu 16. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −12.
B. −8.
C. 12.
D. 8.
Câu 17. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mô-đun của
số phức w =√z2 + 2z bằng bao nhiêu?


B. |w| = 5.
C. |w| = 37.
D. |w| = 13.
A. |w| = 5 13.
Câu 18. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. −1.
B. −4.
C. 5.
D. 2.

Câu 19. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 4.
C. max |z| = 7.

D. max |z| = 6.
1+i
Câu 20. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
15
A. S = .
B. S = .
C. S = .
D. S = .
4
4
2
2
Câu 21. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 4π.
C. π.
D. 3π.
Câu 22. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


B. 25π.
C. 5π.

D. .
A. .
2
4
z
Câu 23. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác đều.
Câu 24. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Hai đường thẳng.
C. Đường tròn.
D. Parabol.

Câu 25. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.



C. |z| = 10.
D. |z| = 33.
A. |z| = 50.
B. |z| = 5 2.
Câu 26. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.




A. max T = 3 2.
B. max T = 2 10.
C. max T = 2 5.
D. max T = 3 5.
Câu 27. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




3
2
A. P = 3.
B. P = 2.
C. P =
.
D. P =
.
2
2
z
Câu 28. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác đều.

D. Tam giác OAB là tam giác vuông.
1+i
Câu 29. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
15
25
A. S = .
B. S = .
C. S = .
D. S = .
2
2
4
4
Trang 2/5 Mã đề 001








−2 − 3i



Câu 30. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1


= 1.
3 − 2i

A. max |z| = 2.
B. max |z| = 1.
C. max |z| = 3.
D. max |z| = 2.
Câu 31. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 20.
B. r = 5.
C. r = 4.
D. r = 22.
Câu 32. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 5 = 0.
B. x − y + 8 = 0.
C. x + y − 8 = 0.
D. x − y + 4 = 0.
Câu 33. (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 − z2 | = 2. Tìm giá
trị lớn nhất√của biểu thức P = |z1 | + |z
√2 |.



B. P = 4 6.
C. P = 34 + 3 2.
D. P = 5 + 3 5.
A. P = 2 26.
Câu 34. Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
A. P = 1.
B. max T = 2 5.
C. P = 2016.
D. P = −2016.

2
Câu 35. (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
và điểm A trong hình vẽ bên là điểm
2
biểu diễn z.
Biết rằng điểm biểu diễn số phức ω =
số phức ω là
A. điểm N.

1
là một trong bốn điểm M, N, P, Q. Khi đó điểm biểu diễn
iz

B. điểm P.

C. điểm M.

D. điểm Q.

Câu 36. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2

A. 18.
B. 4.
C. 8.
D. 9.
Câu 37. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
3
1
A. |w|min = 2.
B. |w|min = .
C. |w|min = 1.
D. |w|min = .
2
2
4
Câu 38. Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu diễn
! số phức thuộc tập hợp
! nào sau đây?
!
!
1 5
1
1 9
9
A. ; +∞ .
B. ; .
C. 0; .
D. ; .

4
4 4
4
2 4
Câu 39. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (−1; 0).
B. (0; +∞).
C. (−∞; 0).
D. (−1; +∞).
Câu 40. Cho hàm số y = f (x) có bảng biến thiên như sau:
x

−∞

y′

+∞

−2



+∞

−2
y
−∞

−2


Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 3.
B. 4.
C. 1.
D. 2.
Câu 41. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vuông cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 3a3 .
B. V = 6a3 .
C. V = 12a3 .
D. V = a3 .
Trang 3/5 Mã đề 001


Câu 42. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối lập phương.

B. Khối tứ diện đều.

C. Khối mười hai mặt đều.

D. Khối bát diện đều.

Câu 43. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 3.

B. 0.


C. 1.

D. 2.

Câu 44. Xét hàm số f (x) = −x4 + 2x2 + 3 trên đoạn [0; 2]. Trong các khẳng định sau, khẳng định nào
sai?
A. Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
B. Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
C. Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x = 0.
D. Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x = 1.

Câu 45. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
B. 83 .

A. 6.

C. 8.

D. 4.

Câu 46. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ =

1
.
x ln 3

B. y′ = − x ln1 3 .

C. y′ = 1x .


D. y′ =

ln 3
.
x





Câu 47. Xét các số phức z thỏa mãn

z2 − 3 − 4i

×