Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
1
1
25
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
B. −31.
C. −17.
D. 17.
Câu 1. Cho số phức z thỏa
A. 31.
Câu 2. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. 11 + 2i.
B. −3 − 10i.
C. −3 − 2i.
D. −3 + 2i.
Câu 3. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực dương.
C. Mô-đun của số phức z là số thực.
(1 + i)(2 − i)
là
Câu 4. Mô-đun của số phức z =
√ 1 + 3i
A. |z| = 5.
B. |z| = 5.
D. |z| = 1.
B. Mô-đun của số phức z là số thực không âm.
D. Mô-đun của số phức z là số phức.
C. |z| =
√
2.
Câu 5.
√ z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là
√
√ Cho số phức z1 = 3 + 2i,
B. 3 10.
C. 10 3.
D. 2 30.
A. 130.
Câu 6. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 0.
B. 3.
C. 1.
D. 2.
Câu 7. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng định
nào dưới đây đúng?
A. d < R.
B. d = 0.
C. d = R.
D. d > R.
R4
R4
R4
Câu 8. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 5.
B. 1.
C. 6.
D. −1.
Câu 9. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên
của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 5.
B. 4.
C. 2.
D. 3.
Câu 10. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (1; +∞).
C. (1; 2).
D. (−∞; 1).
Câu 11. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
16
B. 16π
.
C. 16π
.
D. 15
.
A. 169 .
15
9
Câu 12. Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 30◦ .
B. 90◦ .
C. 45◦ .
D. 60◦ .
Câu 13. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?.
√
√
√
√
A. |w| = 2 2.
B. |w| = 3.
C. |w| = 2.
D. |w| = 5.
Câu 14. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?
√
√
A. P = 2 5.
B. P = 5.
C. P = 13.
D. P = 5.
Trang 1/5 Mã đề 001
Câu 15. Căn bậc hai của -4 trong tập số phức là.
A. 2 hoặc -2.
B. 2i hoặc -2i.
C. 4i.
D. không tồn tại.
Câu 16. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
7
3
A. .
B. − .
C. .
D. − .
4
4
4
4
2
2
Câu 17. Biết x = 2 là một nghiệm của phương trình x + (m − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i bằng bao nhiêu ?
√
A. |w| = 5.
B. |w| = 73.
C. |w| = 5.
D. |w| = 3 5.
Câu 18. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng bao nhiêu?
√
√
D. MN = 2 5.
A. MN = 10.
B. MN = 5.
C. MN = 10.
√
Câu 19. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 3.
C. max |z| = 4.
D. max |z| = 7.
1+i
Câu 20. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
25
15
15
A. S = .
B. S = .
C. S = .
D. S = .
4
2
2
4
√
Câu 21. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
1
3
3
B. |z| < .
C. < |z| < .
D. |z| > 2.
A. ≤ |z| ≤ 2.
2
2
2
2
z
Câu 22. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác nhọn.
Câu 23. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
4
2
1
1
A. √ .
B. .
C. √ .
D. √ .
2
13
5
2
Câu 24. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. 0.
C. 1.
D. −1.
z+i+1
Câu 25. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một đường tròn.
C. Một Parabol.
D. Một đường thẳng.
Câu 26. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 8 = 0.
C. x + y − 5 = 0.
D. x − y + 4 = 0.
Câu 27. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√độ dài của MN là
√
A. MN = 5.
B. MN = 2 5.
C. MN = 5.
D. MN = 4.
z+i+1
Câu 28. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Parabol.
B. Một đường tròn.
C. Một đường thẳng.
D. Một Elip.
Trang 2/5 Mã đề 001
Câu 29. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu
z
là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác vuông.
D. Tam giác OAB là tam giác cân.
−2 − 3i
Câu 30. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
A. max |z| = 1.
B. max |z| = 3.
C. max |z| = 2.
D. max |z| = 2.
Câu 31. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ Để tam giác MNP
√ đều là số phức k là
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức.
27 + i.
B. w = 27√− i hoặcw = 27 +√i.
A. w = − 27
√ − i hoặcw = − √
D. w = 1 + 27i hoặcw = 1 − 27i.
C. w = 1 + 27 hoặcw = 1 − 27.
Câu 32. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 25π.
B.
.
C. 5π.
D. .
2
4
Câu 33. Cho số√phức z thỏa mãn |z| = 1. Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
B. P = −2016.
C. P = 1.
D. P = 2016.
A. max T = 2 5.
1 + z + z2
Câu 34. Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn
là số thực.
1 − z + z2
Khi đó mệnh đề nào sau đây đúng?
1
3
5
3
5
7
A. < |z| < .
B. 2 < |z| < .
C. < |z| < 2.
D. < |z| < .
2
2
2
2
2
2
√
Câu 35. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
1
1
3
3
A. |z| < .
B. < |z| < .
C. |z| > 2.
D. ≤ |z| ≤ 2.
2
2
2
2
Câu 36. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. Phần thực của z là số âm.
B. z là một số thực không dương.
C. |z| = 1.
D. z là số thuần ảo.
Câu 37. Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = 1 và z1 +z2 +z3 = 0. Tính A = z21 +z22 +z23 .
A. A = 0.
B. A = 1 + i.
C. A = 1.
D. A = −1.
z
Câu 38. Cho số phức z thỏa mãn z không phải là số thực và ω =
là số thực. Giá trị lớn nhất của
2 + z2
biểu thức M = |z + 1 − i| là
√
√
C. 2.
D. 2.
A. 8.
B. 2 2.
Câu 39. Cho hàm số y = f (x) có bảng biến thiên như sau:
x
−∞
y′
+∞
−2
−
−
+∞
−2
y
−∞
−2
Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 3.
B. 4.
C. 1.
D. 2.
Câu 40. Xét hàm số f (x) = −x4 + 2x2 + 3 trên đoạn [0; 2]. Trong các khẳng định sau, khẳng định nào
sai?
A. Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
B. Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x = 0.
C. Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x = 1.
D. Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
Trang 3/5 Mã đề 001
Câu 41. Cho hàm số y =
x+1
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1
điểm của (C) và d.
A. 1.
B. 3.
C. 2.
D. 0.
Câu 42. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. 1.
B. −10.
Câu 43. Cho hàm số y =
C. 17.
D. −35.
2x − 3
. Trong các khẳng định sau, khẳng định nào đúng?
−x + 2
A. Hàm số đồng biến trên khoảng (−2; +∞).
B. Hàm số đồng biến trên khoảng (2; +∞).
C. Hàm số đồng biến trên tập xác định của nó.
D. Hàm số đồng biến trên khoảng (−2; 2).
Câu 44. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (0; +∞).
B. (−1; 0).
C. (−1; +∞).
D. (−∞; 0).
Câu 45. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. 36.
Câu 46. Nếu
A. 8.
B. 4.
R2
0
f (x)dx = 4 thì
C. −77.
D. 85.
R 2 h1
0
i
f
(x)
−
2
dx bằng
2
B. −2.
C. 0.
D. 6.
Câu 47. Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6). Xét các điểm M thay đổi sao
cho tam giác OAM khơng có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB
thuộc khoảng nào dưới đây?
A. (2; 3).
B. (3; 4).
C. (4; 5).
D. (6; 7).
Câu 48. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 3.
B. 2.
C. 0.
D. −1.
Câu 49. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (1; +∞).
B. (−∞; 1].
C. [1; +∞).
D. (−∞; 1).
Câu 50. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
A. 17 .
B.
9
.
35
C.
18
.
35
D.
4
.
35
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001