Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Với mọi số phức z, ta có |z + 1|2 bằng
A. z · z + z + z + 1.
B. |z|2 + 2|z| + 1.
C. z2 + 2z + 1.
D. z + z + 1.
Câu 2. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. −9.
B. −10.
C. 9.
D. 10.
4 − 2i (1 − i)(2 + i)
Câu 3. Phần thực của số phức z =
+
là
2−i
2 + 3i
11
29
29
11
A. − .
B. − .
C. .
D. .
13
13
13
13
Câu 4. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −7 − 7i.
B. w = 3 + 7i.
C. w = −3 − 3i.
D. w = 7 − 3i.
(1 + i)(2 + i) (1 − i)(2 − i)
Câu 5. Cho số phức z thỏa mãn z =
+
. Trong tất cả các kết luận sau, kết luận
1−i
1+i
nào đúng?
1
A. z = .
B. z là số thuần ảo.
C. z = z.
D. |z| = 4.
z
Câu 6. Số phức z =
A. -1.
4 + 2i + i2017
có tổng phần thực và phần ảo là
2−i
B. 3.
C. 1.
D. 2.
Câu 7. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường√
tròn đáy sao cho AB = 12,
đường tròn đáy đến mặt phẳng (S AB) bằng
√ khoảng cách từ tâm của
A. 4 2.
B. 8 2.
C. 245 .
D. 245 .
Câu 8. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng
√
√
√
√
A. 62 a3 .
B. 42 a3 ..
C. 2a3 .
D. 22 a3 .
Câu 9. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (6; 7).
B. (7; −6).
C. (7; 6).
D. (−6; 7).
Câu 10. Cho hàm số y = ax+b
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
cx+d
số đã cho và trục hoành là
A. (2; 0).
B. (0; −2).
C. (0; 2).
D. (−2; 0).
Câu 11. Cho hàm số f (x) liên tục trên R. Gọi
R 2 F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
A. 23 .
B. 34 .
C. 3.
D. 6.
Câu 12. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (12; +∞).
B. (−∞; 3).
C. (2; 3).
D. (3; +∞).
Câu 13. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và 2 + 3i.
B. 4 + i và −4 + i.
C. 4 − i và −4 + i.
D. 5 − 2i và −5 + 2i.
Câu 14. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?.
√
√
√
√
A. |w| = 2 2.
B. |w| = 3.
C. |w| = 5.
D. |w| = 2.
Trang 1/5 Mã đề 001
Câu 15. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
số phức w = z2 + 2z bằng bao nhiêu?√
√
√
C. |w| = 5 13.
D. |w| = 13.
A. |w| = 5.
B. |w| = 37.
Câu 16. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 − (5 − 2i)z + 9 − 7i = 0.
B. z2 − (1 + 4i)z + 9 − 7i = 0.
2
C. z + (5 − 2i)z − 9 + 7i = 0.
D. z2 + (1 + 4i)z − 9 + 7i = 0.
Câu 17. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T =
.
B. T = 3.
C. T = .
D. T = 9.
2
4
Câu 18. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?
√
√
C. P = 13.
D. P = 2 5.
A. P = 5.
B. P = 5.
Câu 19. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 20.
B. r = 4.
C. r = 22.
D. r = 5.
√
Câu 20. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 4.
C. max |z| = 6.
D. max |z| = 7.
Câu 21. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
.
C. 25π.
D. .
A. 5π.
B.
2
4
√
2
Câu 22. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2| − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 33.
B. |z| = 50.
C. |z| = 5 2.
D. |z| = 10.
Câu 23. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
2
3
B. P =
.
C. P = 3.
D. P =
.
A. P = 2.
2
2
√
Câu 24. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
A. ≤ |z| ≤ 2.
B. < |z| < .
C. |z| > 2.
D. |z| < .
2
2
2
2
2
Câu 25. Gọi z1 và z2 là các nghiệm của phương trình z − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó độ dài của MN là
√
√
A. MN = 4.
B. MN = 5.
C. MN = 2 5.
D. MN = 5.
1+i
Câu 26. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
′
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM .
25
15
25
15
A. S = .
B. S = .
C. S = .
D. S = .
2
4
4
2
2
Câu 27. Gọi z1 và z2 là các nghiệm của phương trình z − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√độ dài của MN là
√
A. MN = 4.
B. MN = 2 5.
C. MN = 5.
D. MN = 5.
Câu 28. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 10 và 4.
B. 5 và 3.
C. 4 và 3.
D. 5 và 4.
Câu 29. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Hai đường thẳng.
C. Đường tròn.
D. Parabol.
Trang 2/5 Mã đề 001
Câu 30. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. .
B. 5π.
C. .
D. 25π.
2
4
z
Câu 31. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác đều.
−2 − 3i
Câu 32. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
A. max |z| = 3.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 1.
√
2 2
Câu 33. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Mệnh đề nào dưới đây
3
đúng?
√
A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √2.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
8
2 2
.
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =
3
3
2016
2015
Câu 34. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z +z +· · ·+z+1 = 0
2017
+ z2017
+ · · · + z2017
Tính giá trị của biểu thức P = z2017
1
2
2015 + z2016
A. P = 2016.
B. P = 0.
C. P = −2016.
D. P = 1.
2
1
Câu 35. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2
1
z1
z2
. Tính giá trị biểu thức P =