Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 .
B. (1 + i)2018 = −21009 i. C. (1 + i)2018 = −21009 . D. (1 + i)2018 = 21009 i.
Câu 2. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 2.
B. 0.
C. 1.
D. 3.
4(−3 + i) (3 − i)2
Câu 3. Cho số phức z thỏa mãn z =
+
. Mô-đun của số phức w = z − iz + 1 là
−i
√ 1 − 2i
√
√
√
A. |w| = 48.
B. |w| = 85.
C. |w| = 6 3.
D. |w| = 4 5.
4 − 2i (1 − i)(2 + i)
+
là
Câu 4. Phần thực của số phức z =
2−i
2 + 3i
11
29
11
B. − .
C. − .
A. .
13
13
13
D.
29
.
13
Câu 5. Cho hai√số phức z1 = 1 + i và z2 = 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
√
A. |z1 + z2 | = 13.
B. |z1 + z2 | = 1.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 5.
Câu 6. Cho số phức z thỏa mãn z =
nào đúng?
A. |z| = 4.
(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
1−i
1+i
B. z là số thuần ảo.
Câu 7. Phần ảo của số phức z = 2 − 3i là
A. −3.
B. 2.
C. z = z.
1
D. z = .
z
C. 3.
D. −2.
Câu 8. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (1; 2; −3).
B. (1; −2; 3).
C. (−1; −2; −3).
D. (−1; 2; 3).
Câu 9. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
B. πrl.
C. 31 πr2 l.
D. 2πrl.
A. 23 πrl2 .
Câu 10. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
ngun của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 5.
B. 3.
C. 2.
D. 4.
Câu 11. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
A. 6.
B. 83 .
C. 8.
D. 4.
Câu 12. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 3.
B. 1.
C. 4.
D. 2.
Câu 13. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
C. m ≥ 0.
D. 0 < m < .
A. m < 0 hoặc m > . B. 0 ≤ m < .
4
4
4
Trang 1/5 Mã đề 001
Câu 14. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. 5.
B. −4.
C. −1.
D. 2.
Câu 15. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
7
3
B. − .
C. − .
D. .
A. .
4
4
4
4
2
2
Câu 16. Biết x = 2 là một nghiệm của phương trình x + (m − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i bằng bao nhiêu ?
√
A. |w| = 5.
B. |w| = 73.
C. |w| = 5.
D. |w| = 3 5.
Câu 17. Căn bậc hai của -4 trong tập số phức là.
A. 4i.
B. 2i hoặc -2i.
C. không tồn tại.
D. 2 hoặc -2.
Câu 18. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 0.
B. 1.
C. −2.
D. 2.
Câu 19. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 3π.
C. 2π.
D. 4π.
Câu 20. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ tam giác MNP đều
√ là số phức k là
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức. Để
B. w = 1 + √27i hoặcw = 1 − √ 27i.
A. w = −√ 27 − i hoặcw =√− 27 + i.
C. w = 27 − i hoặcw = 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
Câu 21. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Parabol.
C. Một đường thẳng.
D. Hai đường thẳng.
Câu 22. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 20.
C. r = 22.
D. r = 5.
Câu 23. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 4.
B. 10 và 4.
C. 5 và 3.
D. 4 và 3.
Câu 24. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 2π.
C. 4π.
D. 3π.
Câu 25. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. 1.
C. 0.
D. −1.
z−z
=2?
Câu 26. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường tròn.
B. Một đường thẳng.
C. Một Elip.
D. Một Parabol.
z
Câu 27. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
B. Tam giác OAB là tam giác đều.
C. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác cân.
1+i
Câu 28. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
15
25
25
A. S = .
B. S = .
C. S = .
D. S = .
2
4
4
2
Trang 2/5 Mã đề 001
Câu 29. Biết số phức z thỏa mãn |z − 3 − 4i| =
Tính |z|. √
√
B. |z| = 5 2.
A. |z| = 33.
√
5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
C. |z| =
√
10.
D. |z| = 50.
Câu 30. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. x = 2.
C. (x + 1)2 + (y − 2)2 = 125.
D. (x − 5)2 + (y − 4)2 = 125.
Câu 31. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9
9 9
1
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
1
4
C. √ .
A. √ .
B. .
D. √ .
2
13
5
2
√
Câu 32. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
3
1
1
A. < |z| < .
B. ≤ |z| ≤ 2.
C. |z| > 2.
D. |z| < .
2
2
2
2
√
2
Câu 33. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Giá trị lớn nhất của biểu thức
2
P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng
√ bao nhiêu?
√
√
7 2
3 6
4 5
10 2
A. Pmax =
.
B. Pmax =
.
C. Pmax =
.
D. Pmax =
.
3
2
5
3
Câu 34. Cho z1 , z2 là hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị của biểu thức
P = |z1 + z2 |.
√
√
√
√
3
2
A. P = 3.
.
C. P =
.
D. P = 2.
B. P =
2
2
√
√
√
2 42 √
+ 3i+ 15. Mệnh đề nào dưới đây là đúng?
Câu 35. Cho số phức z thỏa mãn 1 − 5i |z| =
z
5
3
1
A. < |z| < 4.
B. < |z| < 3.
C. 3 < |z| < 5.
D. < |z| < 2.
2
2
2
Câu 36. (Sở Nam Định) Tìm mơ-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
A. |z| = 2.
B. |z| = .
C. |z| = 4.
D. |z| = 1.
2
Câu 37. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. −21008 .
B. 22016 .
C. −22016 .
D. 21008 .
Câu 38. Biết rằng |z1 + z2 | = 3 và |z1 | = 3.Tìm giá trị nhỏ nhất của |z2 |?
3
1
A. .
B. .
C. 1.
D. 2.
2
2
Câu 39. Cho hàm số y = f (x) liên tục trên R và lim y = 3. Trong các khẳng định sau, khẳng định nào
x→+∞
luôn đúng?
A. Đường thẳng x = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
B. Đường thẳng y = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
C. Đường thẳng x = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
D. Đường thẳng y = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
Câu 40. Cho hàm số y =
điểm của (C) và d.
A. 1.
x+1
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1
B. 0.
C. 3.
D. 2.
Trang 3/5 Mã đề 001
Câu 41. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai khối chóp có thể tích bằng nhau thì bằng nhau.
B. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
C. Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
D. Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
Câu 42. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
1
A. V = .
2
1
B. V = .
3
1
C. V = .
6
D. V = 1.
Câu 43. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 6a3 .
B. V = 12a3 .
C. V = 3a3 .
D. V = a3 .
Câu 44. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. (0; 3).
B. x = 1.
C. x = 0.
D. (1; 2).
Câu 45. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường tròn đáy sao cho AB = 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
√
√
5
A. 24
.
B. 4 2.
C. 8 2.
D. 245 .
Câu 46. Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 60◦ .
B. 30◦ .
C. 90◦ .
D. 45◦ .
C. −3.
D. 2.
Câu 47. Phần ảo của số phức z = 2 − 3i là
A. −2.
B. 3.
Câu 48. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của |z|. Giá trị của M 2 + m2 bằng
√
√
A. 14.
B. 28.
C. 11 + 4 6.
D. 18 + 4 6.
Câu 49. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (1; 2; −3).
B. (−1; −2; −3).
C. (1; −2; 3).
D. (−1; 2; 3).
Câu 50. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (7; −6).
B. (6; 7).
C. (−6; 7).
D. (7; 6).
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001