Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
z2
Câu 1. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức
z1 +
là
z1
√
√
A. 5.
B. 13.
C. 5.
D. 11.
Câu 2. Cho hai số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
√
A. |z1 + z2 | = 1.
B. |z1 + z2 | = 13.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 5.
(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
A. 0.
B. 1.
C. 2.
D. 21008 .
25
1
1
Câu 4. Cho số phức z thỏa
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. −31.
B. −17.
C. 31.
D. 17.
(1 + i)(2 − i)
là
Câu 5. Mô-đun của số phức z =
1 + 3i
√
√
A. |z| = 2.
B. |z| = 1.
C. |z| = 5.
D. |z| = 5.
Câu 3. Số phức z =
4 − 2i (1 − i)(2 + i)
+
là
Câu 6. Phần thực của số phức z =
2−i
2 + 3i
11
11
29
A. − .
B.
.
C. .
13
13
13
D. −
29
.
13
Câu 7. Cho khối chóp S .ABC có đáy là tam giác vng cân tại A, AB = 2, S A vng góc với đáy và
S A = 3 (tham khảo hình bên). Thể tích khối chóp đã cho bằng
A. 12.
B. 4.
C. 2.
D. 6.
Câu 8. Phần ảo của số phức z = 2 − 3i là
A. −2.
B. 2.
C. 3.
D. −3.
Câu 9. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng
A. 210.
B. 30.
C. 225.
D. 105.
Câu 10. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (3; +∞).
B. (−∞; 1).
C. (0; 2).
D. (1; 3).
Câu 11. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường tròn. Tâm của đường trịn đó có tọa độ là
A. (2; 0).
B. (0; 2).
C. (0; −2).
D. (−2; 0).
R4
R4
R4
Câu 12. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 6.
B. −1.
C. 1.
D. 5.
Câu 13. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 0.
B. −2.
C. 1.
D. 2.
Câu 14. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (1 + 4i)z − 9 + 7i = 0.
B. z2 + (5 − 2i)z − 9 + 7i = 0.
2
C. z − (5 − 2i)z + 9 − 7i = 0.
D. z2 − (1 + 4i)z + 9 − 7i = 0.
Trang 1/5 Mã đề 001
Câu 15. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z2 | +√|z3 | + |z4 |.
√
√
B. T = 4.
C. T = 2 3.
D. T = 4 + 2 3.
A. T = 2 + 2 3.
Câu 16. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. m ≥ 0.
B. m < 0 hoặc m > . C. 0 ≤ m < .
D. 0 < m < .
4
4
4
Câu 17. Căn bậc hai của -4 trong tập số phức là.
A. 2 hoặc -2.
B. 2i hoặc -2i.
C. 4i.
D. không tồn tại.
Câu 18. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T = 3.
B. T =
.
C. T = 9.
D. T = .
2
4
√
2
2
Câu 19. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2| − |z − i| đạt giá trị lớn nhất.
Tính |z|. √
√
√
B. |z| = 50.
C. |z| = 10.
D. |z| = 5 2.
A. |z| = 33.
Câu 20. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Đường tròn.
C. Parabol.
D. Hai đường thẳng.
Câu 21. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên
√
√ mặt phẳng phức. Khi đó độ dài của MN là
B. MN = 5.
C. MN = 4.
D. MN = 2 5.
A. MN = 5.
Câu 22. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 3 5.
B. max T = 2 10.
C. max T = 3 2.
D. max T = 2 5.
−2 − 3i
z + 1
= 1.
Câu 23. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
3 − 2i
√
A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 3.
Câu 24. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. x = 2.
2
2
C. (x − 5) + (y − 4) = 125.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 25. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x + y − 8 = 0.
C. x + y − 5 = 0.
D. x − y + 4 = 0.
Câu 26. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. 2π.
C. 3π.
D. π.
√
Câu 27. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
A. |z| > 2.
B. ≤ |z| ≤ 2.
C. < |z| < .
D. |z| < .
2
2
2
2
Câu 28. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 2 5.
B. max T = 3 2.
C. max T = 2 10.
D. max T = 3 5.
1+i
Câu 29. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
25
15
A. S = .
B. S = .
C. S = .
D. S = .
2
2
4
4
Trang 2/5 Mã đề 001
√
Câu 30. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 7.
B. max |z| = 3.
C. max |z| = 4.
D. max |z| = 6.