Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (575)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.91 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 2.
B. 1.
C. 3.
!2016
!2018
1−i
1+i
+
bằng
Câu 2. Số phức z =
1−i
1+i
A. 2.
B. −2.
C. 1 + i.
Câu 3. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. C.Truehỉ có số 0.
B. 0 và 1.


C. Khơng có số nào.

D. 4.

D. 0.
D. Chỉ có số 1.

Câu 4. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2k.
B. A = 1.
C. A = 0.
D. A = 2ki.
2017
4 + 2i + i
Câu 5. Số phức z =
có tổng phần thực và phần ảo là
2−i
A. 3.
B. 2.
C. -1.
D. 1.
Câu 6. Cho hai√số phức z1 = 1 + i và z2 = 2 − 3i. Tính mơ-đun của
√ số phức z1 + z2 .
A. |z1 + z2 | = 13.
B. |z1 + z2 | = 1.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 5.
Câu 7. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 15.
B. 7.

C. 3.
D. 17.




Câu 8. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =

x3 + (a + 2)x + 9 − a2


đồng biến trên khoảng (0; 1)?
A. 11.
B. 6.

C. 5.

D. 12.

Câu 9. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao nhiêu
giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 3.
B. 4.
C. 2.
D. 1.
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
Câu 10. Cho hàm số y = ax+b
cx+d
số đã cho và trục hoành là
A. (−2; 0).

B. (0; 2).
C. (2; 0).
D. (0; −2).
Câu 11. Tiệm cận ngang của đồ thị hàm số y =
A. y = − 13 .
B. y = − 32 .

2x+1
3x−1

là đường thẳng có phương trình:
C. y = 31 .
D. y = 23 .

Câu 12. Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + 1 = 0. Tâm của (S ) có
tọa độ là
A. (−1; −2; −3).
B. (2; 4; 6).
C. (1; 2; 3).
D. (−2; −4; −6).
Câu 13. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và 2 + 3i.
B. 5 − 2i và −5 + 2i.
C. 4 + i và −4 + i.

D. 4 − i và −4 + i.

Câu 14. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?

A. M1 (6; 14).
B. M4 (6; −14).
C. M3 (−2; 10).
D. M2 (2; −10).
Trang 1/5 Mã đề 001


Câu 15. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
B. m < 0 hoặc m > . C. 0 < m < .
D. m ≥ 0.
A. 0 ≤ m < .
4
4
4
Câu 16. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 2.
B. −2.
C. 1.
D. 0.
Câu 17. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 − i.
B. z = 3 + i.
C. z = −3 − i.

D. z = −3 + i.


Câu 18. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. −1.
B. −4.
C. 5.
D. 2.
Câu 19. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Đường tròn.
C. Hai đường thẳng.
D. Parabol.
Câu 20. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
C. Tam giác OAB là tam giác đều.

z

w

B. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác vuông.

Câu 21. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√ độ dài của MN là

C. MN = 2 5.
D. MN = 5.
A. MN = 4.

B. MN = 5.
Câu 22. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 22.
C. r = 20.
D. r = 4.






−2

3i


z + 1


= 1.
Câu 23. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


3

2i

D. max |z| = 2.

A. max |z| = 3.
B. max |z| = 1.
C. max |z| = 2.
z+i+1
Câu 24. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một đường tròn.
C. Một đường thẳng.
D. Một Parabol.
Câu 25. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x − 5)2 + (y − 4)2 = 125.
C. (x − 1)2 + (y − 4)2 = 125.
D. (x + 1)2 + (y − 2)2 = 125.

Câu 26. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
3
1
A. < |z| < .
B. ≤ |z| ≤ 2.
C. |z| > 2.
D. |z| < .
2
2

2
2






z

z


= 2 ?
Câu 27. Tìm tập hợp các điểm M biểu diễn số phức z sao cho

×