Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (637)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.33 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Số phức z =
A. 2.

4 + 2i + i2017
có tổng phần thực và phần ảo là
2−i
B. 1.
C. 3.

D. -1.

Câu 2. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤
A. m ≥ 1 hoặc m ≤ 0. B. m ≥ 0 hoặc m ≤ −1. C. −1 ≤ m ≤ 0.
D. 0 ≤ m ≤ 1.


5 là

Câu 3. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. 0 và 1.
B. Khơng có số nào.
C. Chỉ có số 1.
D. C.Truehỉ có số 0.


2(1 + 2i)
= 7 + 8i. Mơ-đun của số phức w = z + i + 1 là
Câu 4. Cho số phức z thỏa mãn (2 + i)z +
1+i
A. 5.
B. 13.
C. 4.
D. 3.
Câu 5. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 .
B. (1 + i)2018 = 21009 i. C. (1 + i)2018 = −21009 i. D. (1 + i)2018 = −21009 .
Câu 6. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 + 2i.
B. −3 − 10i.
C. 11 + 2i.

D. −3 − 2i.

. Gọi A và B là hai điểm thuộc
Câu 7. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
3
đường trịn đáy sao cho AB = 12, khoảng cách từ tâm của√đường tròn đáy đến mặt √
phẳng (S AB) bằng
D. 8 2.
A. 245 .
B. 245 .
C. 4 2.
Câu 8. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng





A. 2a3 .
B. 22 a3 .
C. 42 a3 ..
D. 62 a3 .
Câu R9. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới
đây đúng?
R
2
A. f (x)dx = sin x + x2 + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
C. f (x)dx = − sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Câu 10. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = xπ−1 .
B. y′ = πxπ−1 .
C. y′ = π1 xπ−1 .

D. y′ = πxπ .

Câu 11. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. −1.
B. 0.
C. 2.

D. 3.
= y−2
=
Câu 12. Trong không gian Oxyz, cho đường thẳng d : x−1
2
−1
A. Q(1; 2; −3).
B. M(2; −1; −2).
C. P(1; 2; 3).

z+3
.
−2

Điểm nào dưới đây thuộc d?
D. N(2; 1; 2).

Câu 13. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i√bằng bao nhiêu ?

A. |w| = 5.
B. |w| = 5.
C. |w| = 3 5.
D. |w| = 73.
Câu 14. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M3 (−2; 10).
B. M2 (2; −10).
C. M1 (6; 14).

D. M4 (6; −14).
Câu 15. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?

13
13
A. T =
.
B. T = .
C. T = 3.
D. T = 9.
2
4
Trang 1/5 Mã đề 001


Câu 16. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?√

A. |w| = 13.
B. |w| = 37.
C. |w| = 5 13.
D. |w| = 5.
Câu 17. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 1.
B. -1.
C. -3.

D. 2.
Câu 18. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Phương trình đã cho ln có nghiệm.
B. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
−b
.
C. Phương trình đã cho có tổng hai nghiệm bằng
a
c
D. Phương trình đã cho có tích hai nghiệm bằng .
a





z − z





=2?
Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho


z − 2i

A. Một Elip.

B. Một đường tròn.
C. Một Parabol.
D. Một đường thẳng.
Câu 20. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Một đường thẳng.
C. Parabol.
D. Hai đường thẳng.

Câu 21. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.



A. |z| = 50.
B. |z| = 33.
C. |z| = 10.
D. |z| = 5 2.






−2 − 3i


z + 1



= 1.
Câu 22. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


√ 3 − 2i
A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 3.
Câu 23. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. 1.
C. 2.
D. −1.
Câu 24. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. x = 2.
2
2
C. (x − 5) + (y − 4) = 125.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 25. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên

√ mặt phẳng phức. Khi đó độ dài của MN là
B. MN = 5.
C. MN = 2 5.
D. MN = 4.

A. MN = 5.

Câu 26. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


A. |z| = 5 2.
B. |z| = 10.
C. |z| = 50.
D. |z| = 33.
1+i
Câu 27. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
15
25
25
A. S = .
B. S = .
C. S = .
D. S = .
4
2
2
4

Câu 28. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm

1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
1
4
2
A. √ .
B. √ .
C. .
D. √ .
2
13
2
5
Trang 2/5 Mã đề 001



Câu 29. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
A. |z| < .

B. |z| > 2.
C. ≤ |z| ≤ 2.
D. < |z| < .
2
2
2
2
Câu 30. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x − 5)2 + (y − 4)2 = 125.
C. (x + 1)2 + (y − 2)2 = 125.
D. x = 2.
Câu 31. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 4 = 0.
B. x − y + 8 = 0.
C. x + y − 8 = 0.
D. x + y − 5 = 0.
z+i+1
là số thuần ảo?
Câu 32. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một Elip.
B. Một đường thẳng.
C. Một đường tròn.
D. Một Parabol.
Câu 33. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
+ · · · + z2017

+ z2017
Tính giá trị của biểu thức P = z2017
2
1
2015 + z2016
A. P = 1.
B. P = 2016.
C. P = 0.
D. P = −2016.

Câu 34. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
1
1
3
3
B. |z| > 2.
C. |z| < .
D. < |z| < .
A. ≤ |z| ≤ 2.
2
2
2
2
Câu 35. Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = 1 và z1 +z2 +z3 = 0. Tính A = z21 +z22 +z23 .
A. A = 1.
B. A = −1.
C. A = 1 + i.
D. A = 0.
z
Câu 36. Cho số phức z , 0 sao cho z không phải là số thực và w =

là số thực. Tính giá trị biểu
1 + z2
|z|
thức
bằng?
1√+ |z|2
2
1
1
.
B. 2.
C. .
D. .
A.
3
2
5
Câu 37. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. 22016 .
B. −21008 .
C. −22016 .
D. 21008 .
4
Câu 38. Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu !diễn số phức thuộc tập hợp
nào
sau
đây?

!
!
!
1 9
9
1 5
1
B. ; .
C. ; +∞ .
A. ; .
D. 0; .
4 4
2 4
4
4
Câu 39. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 6a3 .
B. V = 3a3 .
C. V = 12a3 .
D. V = a3 .
Câu 40. Cho hàm số y = −x4 − x2 + 1. Trong các khẳng định sau, khẳng định nào sai?
A. Đồ thị hàm số khơng có tiệm cận.
B. Điểm cực tiểu của hàm số là (0; 1).
C. Đồ thị hàm số có một điểm cực đại.
D. Đồ thị hàm số cắt trục tung tại điểm (0; 1).
2x − 3
. Trong các khẳng định sau, khẳng định nào đúng?
Câu 41. Cho hàm số y =
−x + 2

A. Hàm số đồng biến trên khoảng (2; +∞).
B. Hàm số đồng biến trên khoảng (−2; +∞).
C. Hàm số đồng biến trên tập xác định của nó. D. Hàm số đồng biến trên khoảng (−2; 2).
Câu 42. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 1.
B. 2.
C. 3.
D. 0.
Câu 43. Hình đa diện dưới đây có bao nhiêu cạnh?
Trang 3/5 Mã đề 001


A. 12.

B. 18.

C. 21.

D. 15.

Câu 44. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
1
1
1
B. V = .
C. V = 1.
D. V = .
A. V = .
6

2
3
Câu 45. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 3.

B. 1.

C. 4.

D. 2.

Câu 46. Cho hàm số y = ax+b
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
cx+d
số đã cho và trục hoành là
A. (2; 0).

B. (0; −2).

C. (0; 2).

D. (−2; 0).

Câu 47. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường trịn. Tâm của đường trịn đó có tọa độ là
A. (0; 2).

B. (0; −2).


C. (2; 0).

D. (−2; 0).

Câu 48. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
A. 25 .

B. 43 .

C. 41 .

D. 12 .

Câu 49. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn







log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?

A. 89.

B. 90.

C. 49.


D. 48.

Câu 50. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (1; 0).

B. (−1; 2).

C. (1; 2).

D. (0; 1).
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001


×