Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (793)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.42 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Cho số phức z thỏa mãn z =
nào đúng?
A. z = z.

(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
1−i
1+i

B. |z| = 4.

1
C. z = .
z

D. z là số thuần ảo.

Câu 2. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Chỉ có số 1.
B. 0 và 1.
C. Khơng có số nào.


D. C.Truehỉ có số 0.

Câu 3. Với mọi số phức z, ta có |z + 1|2 bằng
A. |z|2 + 2|z| + 1.
B. z + z + 1.

D. z2 + 2z + 1.

C. z · z + z + z + 1.

Câu 4. Cho hai số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .

C. |z1 + z2 | = 1.
D. |z1 + z2 | = 5.
A. |z1 + z2 | = 5.
B. |z1 + z2 | = 13.
Câu 5. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực không âm.
C. Mô-đun của số phức z là số phức.

B. Mô-đun của số phức z là số thực.
D. Mô-đun của số phức z là số thực dương.

Câu 6. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 + 2i.
B. 11 + 2i.
C. −3 − 2i.

D. −3 − 10i.


Câu 7. Cho khối chóp S .ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vng góc với đáy và
S A = 3 (tham khảo hình bên). Thể tích khối chóp đã cho bằng
A. 4.
B. 12.
C. 6.
D. 2.
i
R2
R 2 h1
Câu 8. Nếu 0 f (x)dx = 4 thì 0 2 f (x) − 2 dx bằng
A. −2.
B. 0.
C. 6.
D. 8.
Câu 9. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (3; +∞).
C. (0; 2).

D. (1; 3).

Câu 10. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 3.
B. 1.
C. 2.
D. 4.
Câu 11. Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + 1 = 0. Tâm của (S ) có

tọa độ là
A. (−1; −2; −3).
B. (1; 2; 3).
C. (2; 4; 6).
D. (−2; −4; −6).
Câu 12. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
B. 52 .
C. 21 .
D. 14 .
A. 43 .
Câu 13. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của √
số phức w = m2 − 3m + i bằng bao nhiêu ?

A. |w| = 5.
B. |w| = 3 5.
C. |w| = 5.
D. |w| = 73.
Câu 14. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 1.
B. 2.
C. -1.
D. -3.
Trang 1/5 Mã đề 001


Câu 15. Căn bậc hai của -4 trong tập số phức là.
A. 4i.

B. 2 hoặc -2.
C. không tồn tại.

D. 2i hoặc -2i.

Câu 16. Biết phương trình z + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. −4.
B. −1.
C. 2.
D. 5.
2

Câu 17. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 8.
B. 12.
C. −8.
D. −12.
Câu 18. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √



B. |w| = 2.
C. |w| = 2 2.
D. |w| = 5.
A. |w| = 3.






z − z





=2?
Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho


z − 2i

A. Một Elip.
B. Một đường tròn.
C. Một đường thẳng.
D. Một Parabol.
Câu 20. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 5 và 3.
B. 5 và 4.
C. 4 và 3.
D. 10 và 4.

Câu 21. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √



B. |z| = 10.
C. |z| = 50.
D. |z| = 5 2.
A. |z| = 33.

Câu 22. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
B. ≤ |z| ≤ 2.
C. < |z| < .
D. |z| > 2.
A. |z| < .
2
2
2
2
Câu 23. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. −1.
C. 1.
D. 2.
Câu 24. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. 2π.
C. 4π.

D. π.
z
Câu 25. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác vuông.
D. Tam giác OAB là tam giác đều.
Câu 26. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. −1.
C. 1.
D. 2.
Câu 27. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




3
2
A. P = 3.
B. P = 2.
C. P =
.
D. P =
.
2

2
Câu 28. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 20.
C. r = 5.
D. r = 4.
Câu 29. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x + 1)2 + (y − 2)2 = 125.
C. x = 2.
D. (x − 5)2 + (y − 4)2 = 125.
Trang 2/5 Mã đề 001


Câu 30. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Hai đường thẳng.
C. Parabol.
D. Đường trịn.
Câu 31. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một Parabol.

B. Một đường thẳng.

C. Một Elip.

z+i+1
là số thuần ảo?

z + z + 2i
D. Một đường tròn.

Câu 32. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 4 và 3.
B. 10 và 4.
C. 5 và 4.
D. 5 và 3.
4
Câu 33. Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu diễn
số
phức
thuộc
tập
hợp
nào
sau
đây?
!
!
!
!
9
1 5
1
1 9
A. ; +∞ .

B. ; .
C. 0; .
D. ; .
4
4 4
4
2 4
z
là số thực. Giá trị lớn nhất của
Câu 34. Cho số phức z thỏa mãn z không phải là số thực và ω =
2 + z2
biểu thức M = |z + 1 − i| là √

A. 2.
B. 2.
C. 2 2.
D. 8.
2z − i
Câu 35. Cho số phức z thỏa mãn |z| ≤ 1. ĐặtA =
. Mệnh đề nào sau đây đúng?
2 + iz
A. |A| ≤ 1.
B. |A| > 1.
C. |A| ≥ 1.
D. |A| < 1.

2 2
Câu 36. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Mệnh đề nào dưới đây
3

đúng?

A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √2.
8
2 2
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =
.
3
3
Câu 37. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
1
3
C. |w|min = .
D. |w|min = 2.
A. |w|min = 1.
B. |w|min = .
2
2

1
3
Câu 38. Cho a, b, c là các số thực và z = − +
i. Giá trị của (a + bz + cz2 )(a + bz2 + cz) bằng
2
2
A. a + b + c.
B. a2 + b2 + c2 − ab − bc − ca.

C. a2 + b2 + c2 + ab + bc + ca.
D. 0.
Câu 39. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 3.
B. 2.
C. 1.
D. 0.
Câu 40. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. (0; 3).
B. x = 1.
C. x = 0.

D. (1; 2).

Câu 41. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x

−∞

+∞

1
+

y′

+
+∞

2


y
2
A. y =

2x − 3
.
x−1

B. y =

2x + 3
.
x−1

−∞
C. y =

2x + 1
.
x−1

D. y =

2x − 1
.
x+1

Trang 3/5 Mã đề 001



Câu 42. Xét hàm số f (x) = −x4 + 2x2 + 3 trên đoạn [0; 2]. Trong các khẳng định sau, khẳng định nào
sai?
A. Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x = 1.
B. Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
C. Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
D. Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x = 0.
Câu 43. Hình đa diện dưới đây có bao nhiêu cạnh?

A. 21.
Câu 44. Cho hàm số y =
A. 0.

B. 15.

C. 12.

D. 18.

x+1
. Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
3−x
B. 2.
C. −1.
D. 3.

Câu 45. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 46. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?

A. 1.

B. 4.

C. 3.

D. 2.

Câu 47. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng
định nào dưới đây đúng?
A. d < R.

B. d = 0.

C. d = R.

D. d > R.

Câu 48. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A. ln a.

B. ln 32 .

 
C. ln 6a2 .

D. ln 23 .

C. 3.


D. −3.

Câu 49. Phần ảo của số phức z = 2 − 3i là
A. −2.

B. 2.

Câu 50. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
A.

18
.
35

B.

9
.
35

C.

4
.
35

D. 71 .
Trang 4/5 Mã đề 001



- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×