Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (835)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.96 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001001

Câu 1. Với mọi số phức z, ta có |z + 1|2 bằng
A. z · z + z + z + 1.
B. |z|2 + 2|z| + 1.

C. z2 + 2z + 1.

D. z + z + 1.

Câu 2. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. −21008 .
B. 21008 .
C. −22016 .
D. −21008 + 1.
Câu 3. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 4.
B. 2.
C. 1.
4 − 2i (1 − i)(2 + i)
Câu 4. Phần thực của số phức z =


+

2−i
2 + 3i
11
11
29
B.
.
C. − .
A. .
13
13
13

D. 3.

D. −

29
.
13

Câu 5. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2ki.
B. A = 2k.
C. A = 1.
D. A = 0.
Câu 6. Số phức z =
A. 0.


(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
B. 21008 .
C. 1.
D. 2.

Câu 7. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (7; −6).
B. (−6; 7).
C. (6; 7).
D. (7; 6).
Câu 8. Cho hàm số f (x) liên tục trên R. Gọi
R 2F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
A. 3.
B. 6.
C. 34 .
D. 32 .
Câu 9. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. [1; +∞).
B. (−∞; 1].
C. (−∞; 1).

D. (1; +∞).

Câu 10. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng

A. 354 .
B. 359 .
C. 71 .
D. 18
.
35
2

−16
Câu 11. Có bao nhiêu số nguyên x thỏa mãn log3 x343
< log7
A. 184.
B. 193.
C. 186.

x2 −16
?
27

D. 92.

Câu 12. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 21 . Giá trị của u3 bằng
A. 3.
B. 72 .
C. 41 .
D. 12 .
Câu 13. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?



A. P = 2 5.
B. P = 13.
C. P = 5.
D. P = 5.
Câu 14. Căn bậc hai của -4 trong tập số phức là.
A. 4i.
B. 2i hoặc -2i.
C. không tồn tại.

D. 2 hoặc -2.
Trang 1/5 Mã đề 001001


Câu 15. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −8.
B. 12.
C. −12.
D. 8.
Câu 16. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 − (1 + 4i)z + 9 − 7i = 0.
B. z2 + (1 + 4i)z − 9 + 7i = 0.
C. z2 − (5 − 2i)z + 9 − 7i = 0.
D. z2 + (5 − 2i)z − 9 + 7i = 0.
Câu 17. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?.





A. |w| = 2 2.
B. |w| = 5.
C. |w| = 2.
D. |w| = 3.
Câu 18. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 − i.
B. z = −3 + i.
C. z = −3 − i.

D. z = 3 + i.

z+i+1
là số thuần ảo?
z + z + 2i
C. Một đường trịn.
D. Một Parabol.

Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một đường thẳng.

B. Một Elip.

Câu 20. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 4 và 3.
B. 5 và 4.
C. 5 và 3.
D. 10 và 4.
Câu 21. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.

A. r = 4.
B. r = 20.
C. r = 5.
D. r = 22.
Câu 22. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. 2π.
C. π.
D. 3π.

Câu 23. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.



A. |z| = 50.
B. |z| = 5 2.
C. |z| = 33.
D. |z| = 10.
1+i
Câu 24. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
15
25
A. S = .

B. S = .
C. S = .
D. S = .
2
4
4
2
2
Câu 25. Gọi z1 và z2 là các nghiệm của phương trình z − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
√ x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
27i
hoặcw
=
1

27i.
B.
w
=
27

i
hoặcw
=
27 √
+ i.

A. w = 1 +



C. w = − 27 − i hoặcw = − 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
Câu 26. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 5 và 3.
B. 4 và 3.
C. 10 và 4.
D. 5 và 4.

Câu 27. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 7.
B. max |z| = 6.
C. max |z| = 4.
D. max |z| = 3.
Câu 28. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 5.
C. r = 22.
D. r = 20.
Câu 29. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.



2

3
A. P =
.
B. P =
.
C. P = 3.
D. P = 2.
2
2
Trang 2/5 Mã đề 001001







z − z





=2?
Câu 30. Tìm tập hợp các điểm M biểu diễn số phức z sao cho


z − 2i

A. Một đường thẳng.

B. Một đường tròn.
C. Một Elip.
D. Một Parabol.
z+i+1
Câu 31. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường tròn.
B. Một Parabol.
C. Một đường thẳng.
D. Một Elip.
Câu 32. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


B.
.
C. 25π.
D. 5π.
A. .
4
2
1
2
=
Câu 33. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
z1 z2










1
z1
z2
. Tính giá trị biểu thức P =




×