Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là−3 và phần ảo là −2i.
B. Phần thực là3 và phần ảo là 2.
C. Phần thực là −3 và phần ảo là−2.
D. Phần thực là 3 và phần ảo là 2i.
Câu 2.√Cho số phức z1 = 3 + 2i,
√ z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là √
B. 3 10.
C. 10 3.
D. 130.
A. 2 30.
1
1
25
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
Câu 3. Cho số phức z thỏa
z
1 + i (2 − i)2
A. 31.
B. −31.
C. −17.
D. 17.
z
2
Câu 4. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức
z1 +
là
z
1
√
√
A. 5.
B. 13.
C. 11.
D. 5.
(1 + i)(2 + i) (1 − i)(2 − i)
Câu 5. Cho số phức z thỏa mãn z =
+
. Trong tất cả các kết luận sau, kết luận
1−i
1+i
nào đúng?
1
A. z là số thuần ảo.
B. |z| = 4.
C. z = .
D. z = z.
z
Câu 6. Tính
√ mô-đun của số phức z thỏa mãn z(2 − i) + 13i = √1.
√
34
5 34
A. |z| =
.
B. |z| = 34.
C. |z| =
.
D. |z| = 34.
3
3
Câu 7. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 15.
B. 7.
C. 3.
D. 17.
Câu 8. Cho khối chóp S .ABC có đáy là tam giác vng cân tại A, AB = 2, S A vng góc với đáy và
S A = 3 (tham khảo hình bên). Thể tích khối chóp đã cho bằng
A. 4.
B. 2.
C. 6.
D. 12.
. Gọi A và B là hai điểm thuộc
Câu 9. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
3
đường√
trịn đáy sao cho AB = 12,
đường trịn đáy đến mặt phẳng (S AB) bằng
√ khoảng cách từ tâm của
A. 8 2.
B. 4 2.
C. 245 .
D. 245 .
Câu 10. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = xπ−1 .
B. y′ = πxπ .
C. y′ = πxπ−1 .
D. y′ = π1 xπ−1 .
Câu 11. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (1; 0).
B. (−1; 2).
C. (0; 1).
D. (1; 2).
Câu 12. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n4 = (1; 1; −1).
B. →
n2 = (1; −1; 1).
C. →
n1 = (−1; 1; 1).
D. →
n3 = (1; 1; 1).
Câu 13. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 1.
B. -3.
C. 2.
D. -1.
Câu 14. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 + i và −4 + i.
B. 4 − i và 2 + 3i.
C. 5 − 2i và −5 + 2i.
D. 4 − i và −4 + i.
Câu 15. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
A. |w| = 5.
B. |w| = 3.
C. |w| = 2.
D. |w| = 2 2.
Trang 1/5 Mã đề 001
Câu 16. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
−b
.
A. Phương trình đã cho có tổng hai nghiệm bằng
a
2
B. Nếu ∆ = b − 4ac < 0 thì phương trình đã vơ nghiệm.
C. Phương trình đã cho ln có nghiệm.
c
D. Phương trình đã cho có tích hai nghiệm bằng .
a
Câu 17. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
A. 2.
B. 3.
C. 1.
D. 4.
Câu 18. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
1
3
3
B. .
C. − .
D. − .
A. .
2
2
2
2
′
Câu 19. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9
9 9
1
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
1
2
4
A. .
B. √ .
C. √ .
D. √ .
2
13
2
5
Câu 20. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 3π.
C. 4π.
D. 2π.
√
Câu 21. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 7.
B. max |z| = 4.
C. max |z| = 3.
D. max |z| = 6.
√
Câu 22. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
B. |z| = 10.
C. |z| = 50.
D. |z| = 33.
A. |z| = 5 2.
Câu 23. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 4.
B. 10 và 4.
C. 5 và 3.
D. 4 và 3.
Câu 24. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. 4π.
C. π.
D. 2π.
Câu 25. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Hai đường thẳng.
C. Một đường thẳng.
D. Parabol.
Câu 26. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
.
B. P = 3.
C. P =
.
D. P = 2.
A. P =
2
2
−2 − 3i
Câu 27. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3
−
2i
√
A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 3.
√
Câu 28. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
A. |z| < .
B. ≤ |z| ≤ 2.
C. < |z| < .
D. |z| > 2.
2
2
2
2
z − z