Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
4 − 2i (1 − i)(2 + i)
Câu 1. Phần thực của số phức z =
+
là
2−i
2 + 3i
11
29
11
29
A. .
B. − .
C. − .
D. .
13
13
13
13
Câu 2.
√ mô-đun của số phức w = 6z − 25i là
√ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i. Khi đó
A. 29.
B. 5.
C. 2 5.
D. 13.
Câu 3. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là 3 và phần ảo là 2i.
B. Phần thực là −3 và phần ảo là−2.
C. Phần thực là3 và phần ảo là 2.
D. Phần thực là−3 và phần ảo là −2i.
Câu 4. Cho số phức z thỏa mãn z =
nào đúng?
1
B. |z| = 4.
A. z = .
z
(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
1−i
1+i
C. z là số thuần ảo.
D. z = z.
Câu 5. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 i. B. (1 + i)2018 = −21009 . C. (1 + i)2018 = −21009 i. D. (1 + i)2018 = 21009 .
Câu 6. Số phức z =
A. 1.
(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
B. 2.
C. 21008 .
D. 0.
Câu 7. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 49.
B. 90.
C. 48.
D. 89.
Câu R8. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới
đây đúng?
R
x2
A. f (x)dx = sin x + 2 + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
C. f (x)dx = − sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Câu 9. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị ngun
của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 5.
B. 2.
C. 3.
D. 4.
Câu 10. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (0; 1).
B. (1; 0).
C. (−1; 2).
D. (1; 2).
R4
R4
R4
Câu 11. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 5.
B. 6.
C. −1.
D. 1.
Câu 12. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng
A. 225.
B. 210.
C. 30.
D. 105.
Câu 13. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng√bao nhiêu?
√
A. MN = 10.
B. MN = 5.
C. MN = 10.
D. MN = 2 5.
Trang 1/5 Mã đề 001
Câu 14. Căn bậc hai của -4 trong tập số phức là.
A. 2i hoặc -2i.
B. 2 hoặc -2.
C. không tồn tại.
D. 4i.
Câu 15. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M2 (2; −10).
B. M4 (6; −14).
C. M1 (6; 14).
D. M3 (−2; 10).
Câu 16. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
A. 3.
B. 4.
C. 2.
D. 1.
Câu 17. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (5 − 2i)z − 9 + 7i = 0.
B. z2 − (5 − 2i)z + 9 − 7i = 0.
C. z2 + (1 + 4i)z − 9 + 7i = 0.
D. z2 − (1 + 4i)z + 9 − 7i = 0.
Câu 18. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
B. |w| = 2.
C. |w| = 5.
D. |w| = 2 2.
A. |w| = 3.
Câu 19. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 5 = 0.
B. x + y − 8 = 0.
C. x − y + 8 = 0.
D. x − y + 4 = 0.
Câu 20. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Parabol.
C. Một đường thẳng.
D. Đường tròn.
Câu 21. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
.
B. P =
.
C. P = 2.
D. P = 3.
A. P =
2
2
Câu 22. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
D. .
A. 5π.
B. 25π.
C. .
4
2
Câu 23. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 4.
B. 4 và 3.
C. 5 và 3.
D. 10 và 4.
Câu 24. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó độ dài của MN là
√
√
A. MN = 4.
B. MN = 5.
C. MN = 2 5.
D. MN = 5.
1+i
Câu 25. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
15
A. S = .
B. S = .
C. S = .
D. S = .
4
2
2
4
Câu 26. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 3 2.
B. max T = 2 10.
C. max T = 3 5.
D. max T = 2 5.
Câu 27. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
2
3
A. P = 3.
B. P =
.
C. P =
.
D. P = 2.
2
2
z − z
=2?
Câu 28. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường thẳng.
B. Một Parabol.
C. Một Elip.
D. Một đường tròn.
Trang 2/5 Mã đề 001
Câu 29. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. −1.
C. 1.
D. 2.
z+i+1
là số thuần ảo?
z + z + 2i
C. Một đường trịn.
D. Một Parabol.
Câu 30. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một Elip.
B. Một đường thẳng.
Câu 31. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 10 và 4.
B. 4 và 3.
C. 5 và 3.
D. 5 và 4.
−2 − 3i
Câu 32. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3
−
2i
√
A. max |z| = 1.
B. max |z| = 3.
C. max |z| = 2.
D. max |z| = 2.
√
2
Câu 33. (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
và điểm A trong hình vẽ bên là điểm
2
biểu diễn z.
Biết rằng điểm biểu diễn số phức ω =
số phức ω là
A. điểm N.
1
là một trong bốn điểm M, N, P, Q. Khi đó điểm biểu diễn
iz
B. điểm P.
C. điểm M.
D. điểm Q.
Câu 34. Cho z1 , z2 , z3 là các số phức thỏa mãn |z1 | = |z2 | = |z3 | = 1. Khẳng định nào sau đây đúng?
A. |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 |.
B. |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 |.
C. |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 |.
D. |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 |.
√
3
1
i. Giá trị của (a + bz + cz2 )(a + bz2 + cz) bằng
Câu 35. Cho a, b, c là các số thực và z = − +
2
2
A. 0.
B. a2 + b2 + c2 − ab − bc − ca.
C. a2 + b2 + c2 + ab + bc + ca.
D. a + b + c.
4
= 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu!diễn số phức thuộc tập hợp
! nào sau đây?
!
!
1 9
9
1 5
1
A. 0; .
B. ; .
C. ; +∞ .
D. ; .
4
2 4
4
4 4
Câu 36. Cho số phức z thỏa mãn (3 − 4i)z −
Câu 37. (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω =
phức ω là điểm nào?
A. điểm P.
B. điểm Q.
1
là một trong bốn điểm P, Q, R, S . Hỏi điểm biểu diễn số
z
C. điểm S .
Câu 38. Cho số phức z thỏa mãn z không phải là số thực và ω =
biểu thức M = |z + 1 − i| là
√
A. 8.
B. 2 2.
C. 2.
D. điểm R.
z
là số thực. Giá trị lớn nhất của
2 + z2
√
D. 2.
Câu 39. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
x−3
A. y = −x3 − 2x + 3.
B. y = −x2 + 3x + 5.
C. y =
.
5−x
D. y = x4 − 2x2 + 1.
Câu 40. Trong các hình dưới đây, có bao nhiêu hình đa diện?
Trang 3/5 Mã đề 001
Hình 1
A. 2.
Hình 3
Hình 2
B. 1.
C. 0.
D. 3.
Câu 41. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai khối chóp có thể tích bằng nhau thì bằng nhau.
B. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
C. Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
D. Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
Câu 42. Hình đa diện dưới đây có bao nhiêu cạnh?
A. 15.
B. 21.
C. 12.
Câu 43. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. (0; 3).
B. x = 0.
C. (1; 2).
D. 18.
D. x = 1.
Câu 44. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối bát diện đều.
B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối mười hai mặt đều.
Câu 45. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (1; −2; 3).
B. (−1; −2; −3).
C. (−1; 2; 3).
D. (1; 2; −3).
Câu 46. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A. y = x3 − 3x − 5.
B. y = x4 − 3x2 + 2.
C. y = x2 − 4x + 1.
D. y =
x−3
.
x−1
Câu 47. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
A. 4.
B. 8.
C. 6.
D. 38 .
Câu 48. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n2 = (1; −1; 1).
B. →
n1 = (−1; 1; 1).
C. →
n3 = (1; 1; 1).
D. →
n4 = (1; 1; −1).
Câu 49. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (−∞; 1).
B. (−∞; 1].
C. (1; +∞).
D. [1; +∞).
Câu 50. Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC là tam giác vng cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng
√
√
√
√
A. 22 a3 .
B. 42 a3 ..
C. 2a3 .
D. 62 a3 .
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001