Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
(1 + i)(2 − i)
là
√ 1 + 3i
B. |z| = 5.
Câu 1. Mô-đun của số phức z =
A. |z| = 1.
C. |z| =
√
2.
D. |z| = 5.
Câu 2. Phần thực của số phức z = 1 + (1 + i) + (1 + i) + · · · + (1 + i)
là
1008
1008
2016
A. −2
+ 1.
B. 2 .
C. −2 .
D. −21008 .
(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
Câu 3. Cho số phức z thỏa mãn z =
1−i
1+i
nào đúng?
1
A. z là số thuần ảo.
B. z = .
C. |z| = 4.
D. z = z.
z
Câu 4. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2ki.
B. A = 2k.
C. A = 0.
D. A = 1.
!2016
!2018
1+i
1−i
Câu 5. Số phức z =
+
bằng
1−i
1+i
A. 0.
B. 2.
C. −2.
D. 1 + i.
2
2016
Câu 6. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. 10.
B. −9.
C. −10.
D. 9.
Câu 7. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n3 = (1; 1; 1).
B. →
n1 = (−1; 1; 1).
C. →
n4 = (1; 1; −1).
D. →
n2 = (1; −1; 1).
Câu 8. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
B. ln a.
C. ln 6a2 .
A. ln 32 .
D. ln 23 .
Câu 9. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 3.
B. 0.
C. −1.
D. 2.
Câu 10. Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + 1 = 0. Tâm của (S ) có
tọa độ là
A. (−2; −4; −6).
B. (−1; −2; −3).
C. (2; 4; 6).
D. (1; 2; 3).
Câu 11. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường tròn. Tâm của đường trịn đó có tọa độ là
A. (2; 0).
B. (0; 2).
C. (0; −2).
D. (−2; 0).
Câu 12. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (7; −6).
B. (6; 7).
C. (−6; 7).
D. (7; 6).
Câu 13. Căn bậc hai của -4 trong tập số phức là.
A. không tồn tại.
B. 4i.
C. 2i hoặc -2i.
D. 2 hoặc -2.
Câu 14. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. 5.
B. 2.
C. −4.
D. −1.
Câu 15. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 − (1 + 4i)z + 9 − 7i = 0.
B. z2 + (5 − 2i)z − 9 + 7i = 0.
2
C. z − (5 − 2i)z + 9 − 7i = 0.
D. z2 + (1 + 4i)z − 9 + 7i = 0.
Trang 1/5 Mã đề 001
Câu 16. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
số phức w = z2 + 2z bằng bao nhiêu?√
√
√
C. |w| = 37.
D. |w| = 5 13.
A. |w| = 5.
B. |w| = 13.
Câu 17. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z2 | +√|z3 | + |z4 |.
√
√
A. T = 4 + 2 3.
B. T = 2 + 2 3.
C. T = 4.
D. T = 2 3.
Câu 18. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của số phức w = m2 − 3m +√i bằng bao nhiêu ?
√
A. |w| = 73.
B. |w| = 5.
C. |w| = 5.
D. |w| = 3 5.
−2 − 3i
Câu 19. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3
−
2i
√
A. max |z| = 1.
B. max |z| = 3.
C. max |z| = 2.
D. max |z| = 2.
Câu 20. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
2
3
.
C. P = 2.
.
A. P = 3.
B. P =
D. P =
2
2
z − z
=2?
Câu 21. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Parabol.
B. Một đường thẳng.
C. Một Elip.
D. Một đường trịn.
z+i+1
là số thuần ảo?
Câu 22. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một Elip.
B. Một đường tròn.
C. Một đường thẳng.
D. Một Parabol.
Câu 23. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó độ dài của MN là
√
√
A. MN = 5.
B. MN = 4.
C. MN = 5.
D. MN = 2 5.
Câu 24. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 3π.
C. π.
D. 4π.
Câu 25. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
B. 5π.
C. 25π.
D. .
A. .
4
2
√
Câu 26. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
A. |z| > 2.
B. ≤ |z| ≤ 2.
C. < |z| < .
D. |z| < .
2
2
2
2
′
Câu 27. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
4
1
1
2
A. √ .
B. .
C. √ .
D. √ .
2
13
2
5
Câu 28. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 25π.
B.
.
C. .
D. 5π.
2
4
z − z