Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (773)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.09 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Với mọi số phức z, ta có |z + 1|2 bằng
A. |z|2 + 2|z| + 1.
B. z + z + 1.

C. z · z + z + z + 1.

D. z2 + 2z + 1.

Câu 2. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. −21008 + 1.
B. 21008 .
C. −21008 .
D. −22016 .
Câu 3. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 − 2i.
B. 11 + 2i.
C. −3 − 10i.
D. −3 + 2i.
4 − 2i (1 − i)(2 + i)
Câu 4. Phần thực của số phức z =
+

2−i


2 + 3i
11
11
29
29
A. − .
B.
.
C. .
D. − .
13
13
13
13
Câu 5. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực dương.
B. Mô-đun của số phức z là số phức.
C. Mô-đun của số phức z là số thực không âm. D. Mô-đun của số phức z là số thực.
Câu 6. Số phức z =
A. 21008 .

(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
B. 2.
C. 1.
D. 0.

Câu 7. Trong không gian Oxyz, cho đường thẳng d : x−1
= y−2

=
2
−1
A. Q(1; 2; −3).
B. M(2; −1; −2).
C. N(2; 1; 2).

z+3
.
−2

Điểm nào dưới đây thuộc d?
D. P(1; 2; 3).

Câu 8. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường trịn. Tâm của đường trịn đó có tọa độ là
A. (0; −2).
B. (2; 0).
C. (−2; 0).
D. (0; 2).
Câu 9. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 45◦ .
B. 30◦ .
C. 60◦ .
D. 90◦ .
Câu R10. Cho hàm số f (x) = cos x + x. Khẳng định nàoR dưới đây đúng?
2
2
A. R f (x)dx = sin x + x2 + C.

B. R f (x)dx = − sin x + x2 + C.
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = − sin x + x2 + C.
Câu 11. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A. ln 23 .

B. ln 23 .

C. ln a.

 
D. ln 6a2 .

Câu 12. Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC là tam giác vng cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng




A. 2a3 .
B. 42 a3 ..
C. 62 a3 .
D. 22 a3 .
Câu 13. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
−b
A. Phương trình đã cho có tổng hai nghiệm bằng
.
a
c

B. Phương trình đã cho có tích hai nghiệm bằng .
a
C. Phương trình đã cho ln có nghiệm.
D. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
Trang 1/5 Mã đề 001


Câu 14. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. 5.
B. 2.
C. −4.
D. −1.
Câu 15. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng √
bao nhiêu?

A. MN = 2 5.
B. MN = 10.
C. MN = 10.
D. MN = 5.
Câu 16. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?√

A. |w| = 37.
B. |w| = 5 13.
C. |w| = 13.
D. |w| = 5.

Câu 17. Căn bậc hai của -4 trong tập số phức là.
A. 4i.
B. không tồn tại.
C. 2i hoặc -2i.

D. 2 hoặc -2.

Câu 18. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 1.
B. 4.
C. 3.
D. 2.
Câu 19. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên
√ mặt phẳng phức. Khi đó độ dài của MN là

A. MN = 5.
B. MN = 5.
C. MN = 2 5.
D. MN = 4.
Câu 20. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 4 = 0.
B. x + y − 5 = 0.
C. x − y + 8 = 0.
D. x + y − 8 = 0.
Câu 21. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 5 và 3.
B. 10 và 4.

C. 4 và 3.
D. 5 và 4.
Câu 22. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Hai đường thẳng.
C. Parabol.
D. Đường tròn.
Câu 23. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


B. 25π.
C. .
D. 5π.
A. .
4
2
z
Câu 24. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác nhọn.
B. Tam giác OAB là tam giác cân.
C. Tam giác OAB là tam giác vuông.
D. Tam giác OAB là tam giác đều.
Câu 25. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. (x − 1)2 + (y − 4)2 = 125.
C. x = 2.

D. (x + 1)2 + (y − 2)2 = 125.
Câu 26. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
4
1
2
1
A. √ .
B. .
C. √ .
D. √ .
2
13
5
2
Câu 27. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. 4π.
C. π.
D. 2π.
Trang 2/5 Mã đề 001



Câu 28. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
A. w = 1 +
27
hoặcw
=
1

27.
B.
w
=
27

i
hoặcw
=
27 +√i.



D. w = 1 + 27i hoặcw = 1 − 27i.
C. w = − 27 − i hoặcw = − 27 + i.

Câu 29. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?

3
1
3
1
B. ≤ |z| ≤ 2.
C. |z| > 2.
D. < |z| < .
A. |z| < .
2
2
2
2

Câu 30. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


B. |z| = 5 2.
C. |z| = 10.
D. |z| = 50.
A. |z| = 33.
Câu 31. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



A. max T = 2 5.
B. max T = 2 10.
C. max T = 3 5.

D. max T = 3 2.






−2 − 3i


Câu 32. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1


= 1.
3 − 2i

B. max |z| = 3.
C. max |z| = 1.
D. max |z| = 2.
A. max |z| = 2.
Câu 33. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.



A. 5.
B. 2 5.

C. 10.
D. 15.
Câu 34. (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z|.
Đặt P = 8(b2 − a2 ) − 12. Mệnh đề nào dưới đây đúng?

2

2
A. P = |z|2 − 4 .
B. P = (|z| − 4)2 .
C. P = |z|2 − 2 .
D. P = (|z| − 2)2 .
Câu 35. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. |z| = 1.
B. z là một số thực không dương.
C. Phần thực của z là số âm.
D. z là số thuần ảo.
Câu 36. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. 21008 .
B. 22016 .
C. −21008 .
D. −22016 .
z
Câu 37. Cho số phức z , 0 sao cho z không phải là số thực và w =
là số thực. Tính giá trị biểu
1 + z2
|z|
thức
bằng?

1 + |z|2

1
2
1
B. 2.
C. .
D.
.
A. .
2
5
3
Câu 38. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
Tính giá trị của biểu thức P = z2017
+ z2017
+ · · · + z2017
1
2
2015 + z2016
A. P = 0.
B. P = −2016.
C. P = 2016.
D. P = 1.
Câu 39. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. x = 1.
B. x = 0.
C. (1; 2).


D. (0; 3).

Câu 40. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
B. Hai khối chóp có thể tích bằng nhau thì bằng nhau.
C. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
D. Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
Câu 41. Trong các hình dưới đây, có bao nhiêu hình đa diện?
Trang 3/5 Mã đề 001


Hình 1

A. 2.

B. 1.

Hình 3

Hình 2

C. 0.

D. 3.

Câu 42. Xét hàm số f (x) = −x4 + 2x2 + 3 trên đoạn [0; 2]. Trong các khẳng định sau, khẳng định nào
sai?
A. Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
B. Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
C. Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x = 0.

D. Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x = 1.
Câu 43. Cho hàm số y =

x+1
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1

điểm của (C) và d.
A. 2.

B. 3.

C. 1.

D. 0.

Câu 44. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
x−3
A. y =
.
B. y = −x2 + 3x + 5.
C. y = x4 − 2x2 + 1.
5−x

D. y = −x3 − 2x + 3.

Câu 45. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
A.


4
.
35

B.

18
.
35

C. 71 .

D.

9
.
35

Câu 46. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (−∞; 3).

B. (2; 3).

C. (3; +∞).

D. (12; +∞).

Câu 47. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = − x ln1 3 .


B. y′ = 1x .

C. y′ =

1
.
x ln 3

D. y′ =

ln 3
.
x





Câu 48. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =

x3 + (a + 2)x + 9 − a2


đồng biến trên khoảng (0; 1)?
A. 11.

B. 12.

C. 5.


D. 6.

Câu 49. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng
định nào dưới đây đúng?
A. d < R.

B. d > R.

C. d = 0.

D. d = R.

C. 3.

D. −2.

Câu 50. Phần ảo của số phức z = 2 − 3i là
A. 2.

B. −3.

Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001




×